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Abstract  50 

The consequences of microbial functional diversity loss on key ecosystem processes remain 51 

debatable due to lack of firm evidence from observational or manipulative experiments for a 52 

link between microbial functional diversity and specialized ecosystem functions. Here, we 53 

conducted a microcosm experiment to test for a link between multiple microbial functional 54 

diversity (nitrifiers, methanotrophs and denitrifiers) and corresponding specialized soil 55 

functions (nitrate availability, methane, and nitrous oxide flux) using the dilution-to-extinction 56 

approach. We found that reductions in functional microbial diversity led to declines in the rates 57 

of specialized soil processes. Additionally, partial correlations provided statistical evidence 58 

that the correlations between microbial functional diversity and specialized functions were 59 

maintained after accounting for functional gene abundance (qPCR data) and substrate 60 

availability. Our analyses further suggested little redundancy in the relationship between 61 

microbial functional diversity and specialized ecosystem functions. Our work provides 62 

experimental evidence that microbial functional diversity is critical and directly linked to 63 

maintaining the rates of specialized soil processes in terrestrial ecosystems..   64 

 65 
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Introduction 99 

Experimental and observational approaches over the last twenty years have led to the 100 

conclusion that plant functional diversity is positively linked to ecosystem functioning (Hooper 101 

2005, Díaz et al., 2007; Conti and Díaz 2013; Lavorel et al., 2013; Duffy et al., 2015). Much 102 

less is known on the relationship between microbial functional diversity and specialized soil 103 

processes in terrestrial ecosystems (van Elsas et al., 2012; Philippot et al., 2013; Vivant et al., 104 

2013). Predictions of a decline in terrestrial functional biodiversity have raised substantial 105 

concerns over the consequences that losses in microbial functional diversity may have on key 106 

ecosystem processes and functions (Díaz et al., 2011; Conti and Díaz 2013; Lavorel et al., 107 

2013). For example, Maestre et al., (2015) showed that increases in aridity might result in a 108 

significant decline in soil microbial diversity worldwide. Similarly, potential losses in 109 

microbial functional diversity along with changes in abiotic and biotic factors could potentially 110 

alter specialized ecosystem processes related to nutrient cycling and climate regulation (gases 111 

emissions) (Philippot et al., 2013; Colombo et al., 2016; Maron et al., 2018), but empirical 112 

evidence for this is lacking. Assessing the importance of soil microbial functional diversity in 113 

driving specialized soil processes (i.e., processes conducted for a highly specialized group of 114 

taxa; e.g., nitrifiers) is critical to fill the gaps between the theoretical framework of 115 

macroecology and microbial ecology (Barberan et al., 2014) leading to the formulation of 116 

improved sustainable management and conservation policies (Reed and Martiny 2007; 117 

Delgado-Baquerizo et al., 2016b). 118 

  Previous studies have found a significant and positive relationship between soil 119 

microbial functional and taxonomic diversity and ecosystem functions using observational 120 

correlational approaches (Levine et al., 2011; Singh et al., 2014; Ho et al., 2014; Powell et al., 121 

2015; Trivedi et al., 2016). However, observational links have been questioned because of their 122 

inability to conclusively establish a cause-and-effect relationship between diversity and process 123 

outcomes (Rocca et al., 2015, Hall et al., 2018). Studies using manipulative experimental 124 

approaches to identify linkage between soil microbial functional diversity and key ecosystem 125 

processes provided inconclusive results. The lack of strong experimental support for the link 126 

between microbial functional diversity and specialized functions (BEF) is not solely due to a 127 

small number of studies, but also to apparently inconsistent results from those studies. For 128 

example, previous studies reported that soil microbial diversity promoted single ecosystem 129 

specialized functions (van Elsas et al., 2012; Philippot et al., 2013; Vivant et al., 2013), but 130 

others have reported weak relationships or lack of BEF correlations (Griffiths et al., 2000; 131 

2001; Wertz et al., 2006). These contradictory results may have originated from two major 132 

limitations in previous studies including lack of consideration for (1) the role of microbial 133 

abundance and substrate availability in the interpretation of the microbial BEF results (Peter et 134 

al., 2011; Vivant et al., 2013), and (2) the lack of consideration for multiple functional gene 135 

markers and soil specialized processes simultaneously (Hector and Bagchi, 2007). Moreover, 136 

the importance of microbial functional diversity is commonly challenged by the concept of 137 

functional redundancy (Loreau 2004). However, specialized functions (Schimel and Schaeffer, 138 

2012; Wood et al., 2015) are also expected to be highly sensitive to changes in diversity 139 

because they require a specific physiological pathway and/or are carried out by a small group 140 

of species possessing specialized functional genes (Schimel et al., 2005; Bodelier, 2011; 141 

Philippot et al., 2013; Delgado-Baquerizo et al., 2016a). Drawing on this theoretical 142 

knowledge, a proportional rather than redundant microbial BEF relationship would be expected 143 

for specialized functioning in terrestrial ecosystems.  144 

Here, we used the dilution-to-extinction (e.g. Salonius, 1981; Peter et al., 2011; 145 

Philippot et al., 2013; Delgado-Baquerizo et al., 2016a) experimental approach on soil from 146 

two independent sites to explore the relationship between microbial functional diversity and 147 
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specialized soil processes in terrestrial ecosystems. In this study, we explicitly examine the 148 

links between microbial functional diversity (e.g., nitrifiers, methanotrophs and denitrifiers) 149 

and the rates of specialized functions (e.g. CH4 flux, NO3 production, and N2O flux). All these 150 

specialized functions require specific genes to encode enzymes capable of performing these 151 

functions which are limited to relatively few microbial species. We chose these functional 152 

groups because they are ubiquitous across the globe; functional genes that catalyse processes 153 

are well characterised and studied, and their exact role and mechanisms in carrying out 154 

processes are well established. This provides a strong theoretical framework to test the linkages 155 

between microbial functional diversity and specialized functions. Additionally, activities of 156 

these functional microbial communities play key roles in climate regulation (e.g. greenhouse 157 

gas emission and mitigation) and nutrient (N) cycling. We aim to experimentally test the 158 

hypothesis that reduction in the microbial functional diversity has proportional impact on the 159 

specialized processes in terrestrial ecosystems. We hypothesized that: (a) experimental losses 160 

in microbial functional diversity will lead to reductions in specialized soil processes; and (b) 161 

given the expected importance of soil microbial functional diversity for key soil processes, the 162 

microbial BEF relationship should show little redundancy.  163 

 164 

Materials and methods 165 

Site description 166 

We collected soil samples from two sites in Australia with contrasting precipitation regimes –167 

an important environmental factor which often leads to contrasting microbial communities and 168 

soil attributes (Maestre et al., 2015). Soil sampling was carried out in March 2014. Soil samples 169 

were collected from the top 10 cm from Goolgowi mallee (site A; NSW 33.9667° S, 145.7000° 170 

E) and Warraderry State Forest (site B; NSW, 33.7035° S, 148.2612° E), New South Wales, 171 

Australia; both of them dominated by Eucalyptus spp. Site characteristics and soil properties 172 

for both soils are presented in Table 1.  173 

 174 

Microcosm preparation 175 

Soil samples from each site were sieved to < 2mm and divided in two portions: (1) soil for 176 

sterilization, and (2) soil for microbial inoculum and experimental controls (non-sterilized 177 

original soils). The first portion was sterilised using a double dose of gamma radiation (50kGy 178 

each) at ANSTO Life Sciences facilities, Sydney. Gamma radiation was used as it is known to 179 

cause minimal change to the physical and chemical properties of soils when compared with 180 

other methods of sterilisation such as autoclaving (Wolf et al., 1989; Lotrario et al., 1995). The 181 

dilution-to-extinction approach was used to prepare soil microcosms (Salonius, 1981; Peter et 182 

al., 2011; Philippot et al., 2013; Delgado-Baquerizo et al., 2016a). A parent inoculum 183 

suspension was prepared by mixing 25 g soil in 180 ml of sterilized Phosphate buffer saline 184 

(PBS). The mixture was vortexed on high speed for 5 min to mix the contents. The sediment 185 

was then allowed to settle for 1 min and serial dilutions were prepared from the suspension. 186 

For each soil (soils A and B), 5 dilutions were used as the microbial inoculum (20 ml of 187 

inoculum for each microcosm) to create a diversity gradient; these dilutions were undiluted 188 

(100); 1/10 dilution (D1); 1/103 dilution (D3); 1/106 dilution (D6); and 1/1010 dilution (D10). 189 

Microcosms with non-sterilized soil served as references but not included in our statistical 190 

analyses. A total of 50 microcosms (500g each; 5 dilutions x 5 replicates x 2 soil types) were 191 

prepared. Additionally, we had five replicates of original (no dilution) control samples for each 192 

soil type. The moisture content in these microcosms were adjusted to 50% water holding 193 

capacity to allow microbial activities to be maintained (by adding sterile water if needed) 194 

during the incubation period. These microcosms were established under sterile conditions; 195 

aseptic techniques were used throughout the experiment to avoid contamination. 196 
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Soil microcosms were incubated at 20°C for 6 weeks for microbial colonization and 197 

biomass recovery as described in Delgado-Baquerizo et al., (2016a). This is critical for the 198 

dilution-to extinction method (Delgado-Baquerizo et al., 2016a); microcosms with the highest 199 

dilution are expected to have the lowest microbial biomass initially, which may affect any 200 

interpretation regarding the relationship between microbial diversity and ecosystem 201 

functioning. Biomass recovery is needed to properly address the link between microbial 202 

diversity and ecosystem functioning by controlling for biomass interferences. Thus, we started 203 

measuring microbial diversity and functions only after the abundance of functional gene had 204 

recovered similar levels to those in undiluted treatments.  205 

              206 

Microbial community analysis and quantification  207 

DNA extraction 208 

Total genomic DNA was extracted from 0.25 g of soil using the MoBio PowerSoil DNA 209 

Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) as per the manufacturer’s instructions, 210 

with a slight modification in that a FastPrep bead beating system (Bio-101, Vista, CA, USA) 211 

at a speed of 5.5 m s-1 for 60 s was used at the initial cell-lysis step. The quantity and quality 212 

of extracted DNA were checked photometrically using a NanoDrop® ND-2000c UV-Vis 213 

spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 214 

 215 

Abundance of functional genes 216 

The abundances of ammonia-oxidizing archaea (using amoA gene), N2O reducing bacteria 217 

(using nosZ gene), and methanotrophs (using pmoA gene) were quantified on a CFX-96 218 

thermocycler (Biorad, USA) using primers and conditions described in Table S1. Standard 219 

curves were generated using ten-fold serial dilutions of plasmids containing the correct insert 220 

of each respective gene. The 10 μl reaction mixture contained 5 μl SensiMix SYBR No-ROX 221 

reagent (Bioline, Sydney, Australia), 0.3 μl of each primer (20 mM), 0.4 μl BSA (20 mM), and 222 

1 μl of diluted template DNA (1-10 ng). Melt curve analyses were conducted following each 223 

assay to verify the specificity of the amplification products, and the PCR efficiency for different 224 

assays ranged between 86-95%, 92-98%, and 96-99% for amoA, nosZ, and pmoA genes, 225 

respectively. Amplified products were run on a 2% agarose gel to confirm product size and 226 

specificity. Note that the AOB (ammonia-oxidizing bacteria) community was not included in 227 

our study because of low AOB abundance according to our results from qPCR. Thus, the PCR 228 

products did not satisfy the requirements for T-RFLP (next section). The same problem has 229 

been reported in a previous study including samples from a region near our sampling locations 230 

(Liu et al., 2016). 231 

 232 

Diversity of functional genes   233 

Terminal restriction fragment polymorphism (T-RFLP) for pmoA, amoA (only for ammonia 234 

oxidising archaea), and nosZ were performed using florescent labelled primer pairs 235 

A189F/Mb650R (Bourne et al., 2001), CrenamoA23F/CrenamoA616R (Tourna et al., 2008), 236 

and nosZ1211f/nosZ1917R (Scala&Kerkof,1998), respectively. More details regarding primer 237 

sets used in this study can be found in Table S1. The PCR reactions in a 50 μl mixture contained 238 

2.5 U of BioTaq DNA polymerase (Bioline, Sydney, Australia), 0.5 μl of each primer (20 mM), 239 

1 μl dNTP mix (20 mM), 5 μl 10×NH4 reaction buffer, 2 μl BSA (20 mM), 2 μl MgCl2 solution 240 

(50 mM), 2 μl of five-fold diluted template DNA (1-10 ng). Thermal-cycling conditions for 241 

each gene are provided in Table S1. The PCR products were purified using the Wizard SV Gel 242 

and PCR Clean-Up System (Promega, San Louis, CA, USA). The concentrations of PCR 243 

products were fluorometrically quantified using the NanoDrop® ND-2000c UV-Vis 244 

spectrophotometer. PCR products obtained from individual reactions were digested separately 245 
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with Hhal (for amoA), MspI (for nosZ), Rsal (for pmoA) restriction enzymes in 10 μl volume 246 

containing approximately 200 ng purified PCR products, 20U of the restriction enzymes 247 

(BioLabs, Sydney, Australia), 0.1 μl BSA and 1 μl of 10 × NE Buffer. Digests were incubated 248 

at 37°C for 3 h, followed by 95°C for 10 min to deactivate the restriction enzyme. Terminal 249 

restriction fragments (TRFs) were resolved on an ABI PRISM 3500 Genetic analyzer (Applied 250 

Biosystems, CA, USA). During the fragment analyses, we were unable to successfully resolve 251 

all replicates for each treatment. Therefore, only successful replicates were used for 252 

downstream analyses.  253 

 254 

Functional measurements  255 

Soil gas flux for nitrous oxide (N2O) and methane (CH4) were monitored by placing 20 g of 256 

soil from each microcosm in a glass jar (12 cm depth, 75 cm diameter, Ball, USA), and then 257 

sealing with a gas-tight lid, which had a rubber stopper in the middle. Gas samples (12 ml) 258 

were collected in 15 ml gas-tight syringes at 0, 30 and 60 min after sealing. Gases were 259 

measured in an Agilent-7890a gas chromatograph equipped with a flame ionization detector 260 

(FID) and an electron capture detector (ECD) (Agilent Technologies, Wilmington, DE, USA). 261 

A linear model was then applied to estimate the gas flux rate inside the jar headspace (Matthias 262 

et al., 1980; Martins et al., 2017) and expressed as micrograms of N2O-N/ CH4-C - (μg N2O-263 

N/CH4-C g-1 soil h-1). Note that one of the limitations of our work is that measuring the absolute 264 

consumption of N2O and CH4 in soil (functions driven by nosZ and pmoA) is extremely 265 

challenging. Instead, in our study, we related the diversity of these genes with the flux of N2O 266 

and CH4. Nitrate availability after incubation (our surrogate of nitrification) was measured from 267 

K2SO4 extracts as explained in Delgado-Baquerizo et al., (2013). Dissolved organic C (DOC) 268 

was measured -as described by Jones and Willett (2006).  269 

 270 

Data analysis: diversity of functional genes   271 

Raw T-RFLP data were analysed using the GeneMapper v5 software (Applied Biosystems) 272 

with the advanced peak detection algorithm. A GeneScan 600-LIZ internal size standard was 273 

applied to each sample. The T-RFLP profiles were analyzed using a local southern size calling 274 

method (peaks between 50 and 650 bp in size) and a peak amplitude threshold setting of 50, 275 

using Genemapper version 40 (Applied Biosystems). TRF peaks that differed by less than 1 bp 276 

were binned into the same fragment. The relative fluorescence abundances of all TRFs were 277 

exported for microbial community analysis. A binary table of peak presence/absence was 278 

generated and exported for further statistical analysis for determining the Shannon diversity 279 

index (Singh et al., 2006).  280 

 281 

Testing the relationship between microbial diversity and specialised soil functions. 282 

We used two independent approaches to analyse our dataset (a P-value and a non P-value 283 

approach). First, we tested for differences in functional diversity and key processes across 284 

dilution treatments using non-parametric PERMANOVA analyses (PRIMER-E Ltd., Plymouth 285 

Marine Laboratory, UK), with dilution as a fixed factor (Anderson 2001). We then used the 286 

distance based linear model (distlm function, McArdle & Anderson 2001) to evaluate the 287 

correlation between the diversity (Shannon) within functional gene and specialized functions. 288 

This is a non-parametric method. As we did not transform our data, we used the Bray-Curtis 289 

distance matrix for these analyses –to reduce the influence of extreme values. Additionally, as 290 

an alternative statistical approach, we also used Spearman’s correlation analysis to evaluate the 291 

correlations between microbial functional diversity and specialized functions. We conducted 292 

partial correlation analysis to evaluate any potential influence of abundance of functional gene 293 
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(qPCR data) and substrate availability (dissolved organic carbon (DOC) content) in our 294 

conclusions (see Delgado-Baquerizo et al., 2016a for a similar approach).  295 

We then used a non P value dependent approach to evaluate two potential fits for the 296 

relationship between microbial functional diversity [ammonia-oxidizing archaea (using amoA 297 

gene), N2O reducing bacteria (using nosZ gene), and methanotrophs (using pmoA gene)] and 298 

their corresponding specialized functions at the two sites using two characteristic functionally 299 

redundant (logarithmic model) vs. non-functional redundancy (linear model describing at least 300 

proportional losses) models. Best model fits were selected by Akaike information criteria 301 

(AICc; Burnham & Anderson 2002) where a lower AICc value represents a model with a better 302 

fit. AICc is a corrected version of AIC that is highly recommended when dealing with small 303 

sample sizes, as in our case (Burnham and Anderson 2002). We further used a difference in 304 

AICc values of 2 (∆AICc > 2) to determine substantial differences between models (Burnham 305 

and Anderson 2002; Burnham et.al., 2011). The analysis was performed using R package 306 

(https://www.r-project.org/). We used the lm functions from R to conduct these analyses. For 307 

the logarithmic model we used this command: lm(y ~ log(x)). Information on the AICc index 308 

was obtained using the package MuMIn from R (Barton 2018). 309 

 310 

Results 311 

Recovery of microbial abundance  312 

After a six-week incubation, we measured the abundance of functional genes (N2O reducing 313 

bacteria using nosZ gene; methanotrophs using pmoA gene and ammonia oxidising archaea and 314 

bacteria using amoA) using qPCR  - as a proxy for biomass of functional groups in our soil 315 

microcosms from two different sites (Soil A and B). Our results showed that microbial 316 

abundance had successfully recovered in all diversity dilution microcosms. As such, we did 317 

not detect significant differences for microbial abundance levels across different dilution 318 

treatments (PERMANOVA P > 0.05; Fig. 1).  319 

On the contrary, T-RFLP analysis showed significant differences in the diversity 320 

(Shannon) of N2O reducing bacteria (using nosZ gene); methanotrophs (using pmoA gene); and 321 

ammonia oxidising archaea (using amoA) for both sites (PERMANOVA P < 0.05; Fig. 2). 322 

Shannon diversity for these functional genes was always positively and significantly related to 323 

richness in both soils (P < 0.05).  324 

 325 

Links between functional diversity and specialized functions 326 

We observed significant correlations between the diversity of functional groups and their 327 

specialized functions for both soil types using all three models tested (Fig. 3). The values of 328 

specialized functions across different dilutions are shown in Fig. S1. These correlations were 329 

maintained after using an alternative non-parametric approach (Spearman; Table S2).  330 

To account for the influence of functional gene abundance and substrate availability on 331 

the functional diversity- specialized function relationship, we conducted partial correlations 332 

using microbial functional diversity as a predictor of soil specialized functions and accounting 333 

for functional gene abundance (qPCR data) and substrate availability (DOC) (Table S3; Fig. 334 

S2). In general, the results were similar to those observed in Fig 3 where functional diversity 335 

was significantly correlated to specialized functions. As NO3
- concentration is also known to 336 

regulate N2O production we conducted further partial correlation analysis using nosZ 337 

functional diversity as a predictor of N2O flux controlled by NO3- concentrations. Our results 338 

showed significant correlations of functional diversity of denitrifiers with N2O flux even after 339 

accounting for nitrate production (Table S4).  340 

Overall, statistical modelling did not demonstrate functional redundancy in the 341 

relationship between microbial functional diversity and soil processes (Table 2).  In fact, we 342 
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observed little functional redundancy in our results. Thus, the redundant (logarithmic) 343 

relationships were observed only in two cases including the relationship between functional 344 

diversity and N2O flux and NO3 production at site A (Table 2). In the rest of the cases - 4 out 345 

of 6 a proportional loss or not clear functional redundancy was detected (Table 2).  346 

 347 

Discussion 348 

Our findings provide experimental evidence that microbial functional diversity positively 349 

relates to three important specialized ecosystem functions (nitrification, denitrification and 350 

methane flux) in terrestrial ecosystems. As such, our findings provide experimental support to 351 

previous observational studies linking microbial functional diversity with ecosystem functions. 352 

These results were maintained after accounting for potential effects of functional gene 353 

abundance and substrate availability. Moreover, further analyses provided evidence for little 354 

functional redundancy in the relationship between microbial functional diversity and 355 

specialized functions. This knowledge is essential for developing a predictive understanding of 356 

functional consequences for microbial community responses to environmental perturbations 357 

(Girvan et al., 2005; Singh et al., 2014; Blaser et al., 2016).  358 

A positive correlation was observed in this study between CH4 flux, NO3 production, 359 

and N2O flux and the functional diversity of pmoA genes (for methanotrophs), amoA genes (for 360 

ammonia oxidisers) and nosZ genes (for denitrifiers). Thus, any reductions in the diversity of 361 

amoA genes derived from biotic or abiotic changes might largely reduce the availability of 362 

nitrate in terrestrial ecosystems -h (Robertson & Groffman, et al., 2007). Moreover, reductions 363 

in the diversity of methanotrophs (pmoA genes) and denitrifiers (nosZ genes) could have 364 

potential negative consequences for climate regulation on Earth by increasing the amount of 365 

methane and N2O released to the atmosphere. Both methanotrophs (pmoA gene) and denitrifiers 366 

(nosZ genes) are essential microbial communities in terrestrial ecosystems as they constitute 367 

the ultimate barriers that reduce the release of potent greenhouse gases CH4 and N2O gasses - 368 

from deeper soil layers to the atmosphere (Smith et al., 2003; Heimann and Reichstein, 2008). 369 

This finding is supported by previous experimental work in water (Peter et al., 2011; Delgado-370 

Baquerizo et al., 2016b) and soil (Phillipot et al., 2013) that have reported positive relationships 371 

between microbial diversity of specialized microbes with highly specialized functions.  372 

In accordance with our hypothesis, the results demonstrate that specialized functions 373 

(Levine et al., 2011; Hu et al., 2015a, Phillipot et al., 2013) are highly sensitive to losses in 374 

functional diversity because they require a specific physiological pathway and/or are carried 375 

out by a phylogenetically clustered group of organisms (Schimel and Schaeffer, 2012; Wood 376 

et al., 2015). In particular, we found little functional redundancy in the relationship between 377 

microbial functional diversity and specialized functions (only 2 out of 6 cases were statistically 378 

identified as functionally redundant). This is also in agreement with previous experimental 379 

assays in freshwater ecosystems (Delgado-Baquerizo et al., 2016b) and ultimately indicates 380 

that specialised functions are potentially sensitive to losses of microbial diversity in natural 381 

settings. Identifying the reasons for the reported differences in the shape of the relationship 382 

between functional diversity and specialized functions using two single soils is challenging, an 383 

out of the scope of this paper, however, our results suggest that the shape of the microbial 384 

functional BEF relationship seems to be consistent for different types of processes in N cycle 385 

and the same model was selected for denitrification and nitrification rates in soils A 386 

(logarithmic) and B (linear; Table 2).  387 

It can be argued that functional gene abundance and substrate availability can influence 388 

the relationship between biodiversity and functions in our results. Our results provide evidence 389 

that the significant relationship between microbial functional diversity and specialized 390 

functions is maintained after statistically controlling for effects of functional gene abundance 391 
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and substrate availability. Also, we would like to highlight that we do not expect any effect on 392 

our conclusions by the use of T-RFLP analyses in our study. Despite low resolution, T-RFLP 393 

has been used to determine the diversity-function relationships in several studies (Korhonen et 394 

al., 2011; Delgado-Baquerizo et al., 2016a). Recent studies have provided evidence that T-395 

RFLP and next generation sequencing (including 454 pyrosequencing and MiSeq) provide 396 

similar results in terms of diversity estimation (Van Dorst et al., 2014; Delgado-Baquerizo et 397 

al., 2016a). This technique is especially efficient for determining the diversity and composition 398 

of specialized microbial groups using functional genes wherein the diversity is low, and the 399 

groups represent only a minor fraction of the overall microbial community (Stralis et al., 2004; 400 

Singh et al., 2007; Hu et al., 2015b). Overall, we were able to create strong functional diversity 401 

gradients in our microcosms and these provided us with an appropriate system to explore the 402 

functional responses of changes in microbial diversity and the consequences of these changes 403 

for the specialized functioning of three important functions for the soil ecosystem.  404 

Together, our study provides experimental evidence that, similar to what has been 405 

reported for plant functional diversity, microbial functional diversity largely influence 406 

important soil processes associated with  the production of NO3, and fluxes of N2O and CH4. 407 

We also provide evidence that the correlation between functional diversity and specialized 408 

functions is robust to any effects from functional gene abundance and substrate availability. 409 

Our results further suggest that there is little functional redundancy in the relationship between 410 

microbial functional diversity and associated specialized processes. Together, our study 411 

indicate that loss of soil microbial functional diversity associated with changes in biotic and 412 

abiotic environmental factors could have important consequences for specialized soil functions 413 

in terrestrial ecosystems.  414 
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 731 

Fig 1. Abundance [mean number of gene copies g-1 soil (± SE)] of functional microbial 732 

communities. DC represents the original soil (not included in statistical analyses). DX to D10 733 

represent diluations from 100 to 10-10. 734 
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 749 

 750 

Fig 2.  Mean (± SE) values for microbial functional diversity (Shannon). DC represents the 751 

original soil (not included in statistical analyses). DX to D10 represent diluations from 100 to 752 

10-10. 753 
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 768 

 769 

Fig 3. Correlations between microbial functional diversity [as determined by T-RFLP analysis 770 

of functional genes pmoA, amoA and nosZ)] and their specialized functions. Different colours 771 

represent different dilutions darker to light (DX-D10). DC represents the original soil (not 772 

included in statistical analyses). Potential regression fits are available in Table 2.  773 
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Table 1. Environmental characteristics, location and soil properties of sampling sites. 783 

 784 

 Sampling sites 

Environmental variables Site A (Goolgowei mallee) Site B (Warraderry state forest) 

Rainfall (mm year-1) 400 657 

Latitude -34.99803 -33.72992 

Longitude 145.72637 148.20335 

Soil texture Clay loam Sandy clay 

Clay % 32 37 

pH (H20) 6.01 5.68 

Total carbon (%)a 1.73 1.84 

Total nitrogen (%)a 0.13 0.15 

NH4
+-N (mg kg-1)b 5.23 4.90 

Olsen P (mg kg−1)c 9.58 6.93 

MB-P (mg kg−1)c 21.64 22.8 
 

785 

a Measured with a CN analyzer (Leco CHN628 Series, LECO Corporation, St Joseph, MI, 786 

USA) following the Dumas combustion method. 787 

b Analysed colorimetrically (Sims et al., 1995) from K2SO4 0.5 M soil extracts using a 1:5 soil: 788 

extract ratio as described in Jones and Willett (2006).  789 

c Measured by NaHCO3 extracts of the Olsen method (Watanabe & Olsen, 1965). 790 
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Table 2. Model fit statistics and AICc index describing the relationship between microbial 814 

diversity and ecosystem functions. AICc measures the relative goodness of fit of a given model; 815 

the lower its value, the more likely it is that this model is correct. Two models with a ∆AICc 816 

value > 2 are considered to be substantially different. Logarithmic: Y = a + b · log(X); Linear: 817 

Y = a + b · X. 818 

 
819 

 
820 

Gene Function Site Model R2 
 

Formula AICc DeltaAICc 
Selected 
Model(s) 

amoA 
Nitrate 

production A Logarithmic 0.80 
 

Y = 0.0699 + log (0.1581X) -94.38 0.00 ✓ 

   Linear 0.75 
 

Y = -0.0506 + 0.1203X -89.73 4.65  

amoA 
Nitrate 

production B Logarithmic 0.81 
 

Y = 0.1196 + log (0.1522X) -120.38 4.67  

   Linear 0.85 
 

Y = -0.0235 + 0.1395X -125.05 0.00 ✓ 

nosZ N2O flux A Logarithmic 0.58 
 

Y = 0.0026 + log (-0.0028 X) -197.85 0.00 ✓ 

   Linear 0.49 
 

Y = 0.0047 -0.0018X -193.91 3.94  

nosZ N2O flux B Logarithmic 0.65 
 

Y = 0.0051 + log (-0.0045X) -237.04 2.85  

   Linear 0.69 
 

Y = 0.0078 -0.0027X -239.89 0.00 ✓ 

pmoA Methane flux A Logarithmic 0.05 
 

Y = -1.609e-04 + log (-2.536e-05 X) -322.11 0.00 ✓ 

   Linear 0.04 
 

Y = -1.444e-04 -1.502e-05 X -321.99 0.12 ✓ 

pmoA Methane flux B Logarithmic 0.60 
 

Y = -1.841e-04 + log -8.459e-05X) -410.16 5.07  

   Linear 0.67 
 

Y = -9.603e-05 -7.439e-05X -415.23  0.00 ✓ 
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