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Abstract

The consequences of microbial functional diverkigs on key ecosystem processes remain
debatable due to lack of firm evidence from obsgwowal or manipulative experiments for a
link between microbial functional diversity and sg@ized ecosystem functions. Here, we
conducted a microcosm experiment to test for a liakveen multiple microbial functional
diversity (nitrifiers, methanotrophs and denitnife and corresponding specialized soill
functions (nitrate availability, methane, and nigsaxide flux) using the dilution-to-extinction
approach. We found that reductions in functionalrotial diversity led to declines in the rates
of specialized soil processes. Additionally, partiarrelations provided statistical evidence
that the correlations between microbial functiodsdersity and specialized functions were
maintained after accounting for functional gene ralamnce (qPCR data) and substrate
availability. Our analyses further suggested littl®lundancy in the relationship between
microbial functional diversity and specialized egsiem functions. Our work provides
experimental evidence that microbial functionaledsity is critical and directly linked to
maintaining the rates of specialized soil procegsésrrestrial ecosystems..

Key words: Microbial functional diversity; Specialized ecosys functions; Nutrient cycling,
Functional redundancy.
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Introduction

Experimental and observational approaches overlabe twenty years have led to the
conclusion that plant functional diversity is pogty linked to ecosystem functioning (Hooper
2005, Diazt al., 2007; Conti and Diaz 2013; Lavoetlal., 2013; Duffyet al., 2015). Much
less is known on the relationship between microtuattional diversity and specialized soil
processes in terrestrial ecosystems (van Esals 2012; Philippogt al., 2013; Vivantet al.,
2013). Predictions of a decline in terrestrial fmmal biodiversity have raised substantial
concerns over the consequences that losses inbi@tfanctional diversity may have on key
ecosystem processes and functions ([2faal., 2011; Conti and Diaz 2013; Lavorelal.,
2013). For example, Maesteeal., (2015) showed that increases in aridity might ltesua
significant decline in soil microbial diversity wdwide. Similarly, potential losses in
microbial functional diversity along with changesabiotic and biotic factors could potentially
alter specialized ecosystem processes relatediiemcycling and climate regulation (gases
emissions) (Philippo¢t al., 2013; Colombaet al., 2016; Maronet al., 2018), but empirical
evidence for this is lacking. Assessing the impazéaof soil microbial functional diversity in
driving specialized soil processes (i.e., processeslucted for a highly specialized group of
taxa; e.g., nitrifiers) is critical to fill the gapbetween the theoretical framework of
macroecology and microbial ecology (Barbertral., 2014) leading to the formulation of
improved sustainable management and conservatidicigso (Reed and Martiny 2007;
Delgado-Baquerizet al., 2016b).

Previous studies have found a significant anditipesrelationship between soll
microbial functional and taxonomic diversity andoggstem functions using observational
correlational approaches (Levigeal., 2011; Singtet al., 2014; Hoet al., 2014; Powelkt al .,
2015; Trivediet al., 2016). However, observational links have beerstioieed because of their
inability to conclusively establish a cause-anaetffelationship between diversity and process
outcomes (Roccat al., 2015, Hallet al., 2018). Studies using manipulative experimental
approaches to identify linkage between soil miabhinctional diversity and key ecosystem
processes provided inconclusive results. The lddtrong experimental support for the link
between microbial functional diversity and speeiadi functions (BEF) is not solely due to a
small number of studies, but also to apparentlpmscstent results from those studies. For
example, previous studies reported that soil miatofbiversity promoted single ecosystem
specialized functions (van Elsessal., 2012; Philippott al., 2013; Vivantet al., 2013), but
others have reported weak relationships or lacBEF correlations (Griffithst al., 2000;
2001; Wertzet al., 2006). These contradictory results may have waigid from two major
limitations in previous studies including lack ajnsideration for (1) the role of microbial
abundance and substrate availability in the intggtion of the microbial BEF results (Peter
al., 2011; Vivantet al., 2013), and (2) the lack of consideration for mpldt functional gene
markers and soil specialized processes simultahefidsector and Bagchi, 2007). Moreover,
the importance of microbial functional diversityaemmonly challenged by the concept of
functional redundancy (Loreau 2004). However, sgdezgid functions (Schimel and Schaeffer,
2012; Woodet al., 2015) are also expected to be highly sensitivenanges in diversity
because they require a specific physiological pathand/or are carried out by a small group
of species possessing specialized functional gégelimel et al., 2005; Bodelier, 2011,
Philippot et al., 2013; Delgado-Baquerizet al., 2016a). Drawing on this theoretical
knowledge, a proportional rather than redundantabial BEF relationship would be expected
for specialized functioning in terrestrial ecosysse

Here, we used the dilution-to-extinction (e.g. dals, 1981; Peteet al., 2011;
Philippotet al., 2013; Delgado-Baqueriza al., 2016a) experimental approach on soil from
two independent sites to explore the relationslefevben microbial functional diversity and
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specialized soil processes in terrestrial ecosystémthis study, we explicitly examine the
links between microbial functional diversity (e.qgitrifiers, methanotrophs and denitrifiers)
and the rates of specialized functions (e.gs @ik, NOs production, and pO flux). All these
specialized functions require specific genes tadacenzymes capable of performing these
functions which are limited to relatively few midtial species. We chose these functional
groups because they are ubiquitous across the;dlofetional genes that catalyse processes
are well characterised and studied, and their exalet and mechanisms in carrying out
processes are well established. This provide®agtheoretical framework to test the linkages
between microbial functional diversity and speedi functions. Additionally, activities of
these functional microbial communities play keyesoln climate regulation (e.g. greenhouse
gas emission and mitigation) and nutrient (N) cygliWe aim to experimentally test the
hypothesis that reduction in the microbial funcéibdiversity has proportional impact on the
specialized processes in terrestrial ecosystemshyfethesized that: (a) experimental losses
in microbial functional diversity will lead to redtions in specialized soil processes; and (b)
given the expected importance of soil microbialctional diversity for key soil processes, the
microbial BEF relationship should show little redancy.

Materials and methods

Site description

We collected soil samples from two sites in Augiralith contrasting precipitation regimes —
an important environmental factor which often ledsontrasting microbial communities and
soil attributes (Maestre al., 2015). Soil sampling was carried out in March 2(8dil samples
were collected from the top 10 cm from Goolgowi leal(site A; NSW 33.9667° S, 145.7000°
E) and Warraderry State Forest (site B; NSW, 337 148.2612° E), New South Wales,
Australia; both of them dominated Bycalyptus spp. Site characteristics and soil properties
for both soils are presented in Table 1

Microcosm preparation

Soil samples from each site were sieved to < 2mdhdawvided in two portions: (1) soil for
sterilization, and (2) soil for microbial inoculuand experimental controls (non-sterilized
original soils). The first portion was sterilisesing a double dose of gamma radiation (50kGy
each) at ANSTO Life Sciences facilities, Sydneym@sa radiation was used as it is known to
cause minimal change to the physical and chemiwglesties of soils when compared with
other methods of sterilisation such as autoclagglf et al., 1989; Lotraricet al., 1995). The
dilution-to-extinction approach was used to pregiémicrocosms (Salonius, 1981; Peder
al., 2011; Philippotet al., 2013; Delgado-Baquerizet al., 2016a). A parent inoculum
suspension was prepared by mixing 25 g soil in hB0f sterilized Phosphate buffer saline
(PBS). The mixture was vortexed on high speed forilbto mix the contents. The sediment
was then allowed to settle for 1 min and serialtthhs were prepared from the suspension.
For each soil (soils A and B), 5 dilutions were dises the microbial inoculum (20 ml of
inoculum for each microcosm) to create a divergiigdient; these dilutions were undiluted
(10P); 1/10 dilution (D1); 1/1®dilution (D3); 1/16 dilution (D6); and 1/18 dilution (D10).
Microcosms with non-sterilized soil served as refees but not included in our statistical
analyses. A total of 50 microcosms (500g eachjidns x 5 replicates x 2 soil types) were
prepared. Additionally, we had five replicates ogmal (no dilution) control samples for each
soil type. The moisture content in these microcosvese adjusted to 50% water holding
capacity to allow microbial activities to be maintd (by adding sterile water if needed)
during the incubation period. These microcosms vestablished under sterile conditions;
aseptic techniques were used throughout the expetita avoid contamination.

4



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Soil microcosms were incubated at 20°C for 6 wdeksnicrobial colonization and
biomass recovery as described in Delgado-Baquetiab, (2016a). This is critical for the
dilution-to extinction method (Delgado-Baquergal., 2016a); microcosms with the highest
dilution are expected to have the lowest microbialmass initially, which may affect any
interpretation regarding the relationship betweeicrobial diversity and ecosystem
functioning. Biomass recovery is needed to propedgress the link between microbial
diversity and ecosystem functioning by controllfogbiomass interferences. Thus, we started
measuring microbial diversity and functions onlieathe abundance of functional gene had
recovered similar levels to those in undiluted tiresnts.

Microbial community analysis and quantification

DNA extraction

Total genomic DNA was extracted from 0.25 g of aaing the MoBio PowerSoil DNA
Isolation Kit (MoBio Laboratories, Carlsbad, CA, Alsas per the manufacturer’s instructions,
with a slight modification in that a FastPrep béadting system (Bio-101, Vista, CA, USA)
at a speed of 5.5 mtdor 60 s was used at the initial cell-lysis st€pe quantity and quality
of extracted DNA were checked photometrically usandNanoDrofi ND-2000c UV-Vis
spectrophotometer (NanoDrop Technologies, WilmingdE, USA).

Abundance of functional genes

The abundancesf ammonia-oxidizing archaea (usiagioA gene), NO reducing bacteria
(using nosZ gene), and methanotrophs (usipgioA gene)were quantified on a CFX-96
thermocycler (Biorad, USA) using primers and condis described in Table S1. Standard
curves were generated using ten-fold serial dihgtiof plasmids containing the correct insert
of each respective gene. ThellGeaction mixture containedd SensiMix SYBR No-ROX
reagent (Bioline, Sydney, Australia), QuBof each primer (20 mM), 0.4l BSA (20 mM), and

1 pl of diluted template DNA (1-10 ng). Melt curve &yses were conducted following each
assay to verify the specificity of the amplificatiproducts, and the PCR efficiency for different
assays ranged between 86-95%, 92-98%, and 96-98%ni@A, nosZ, and pmoA genes,
respectively. Amplified products were run on a 28arase gel to confirm product size and
specificity. Note that the AOB (ammonia-oxidizingdberia) community was not included in
our study because of low AOB abundance accordimgitgesults from gPCR. Thus, the PCR
products did not satisfy the requirements for T-RKbhext section). The same problem has
been reported in a previous study including samiptes a region near our sampling locations
(Liu et al., 2016).

Diversity of functional genes

Terminal restriction fragment polymorphism (T-RFL#8y pmoA, amoA (only for ammonia
oxidising archaea), andhosZ were performed using florescent labelled primerrgai
A189F/Mb650R (Bournet al., 2001), CrenamoA23F/CrenamoA616R (Touehal., 2008),
and nosZ1211f/nosZ1917R (Scala&Kerkof,1998), rebpely. More details regarding primer
sets used in this study can be found in Table 8& PICR reactions in a mdmixture contained
2.5 U of BioTag DNA polymerase (Bioline, Sydney,shalia), 0.5l of each primer (20 mM),
1 ul dNTP mix (20 mM), 5ul 10xNH,4 reaction buffer, 2 BSA (20 mM), 2ul MgCl> solution
(50 mM), 2ul of five-fold diluted template DNA (1-10 ng). Thaal-cycling conditions for
each gene are provided in Table S1. The PCR predverte purified using the Wizard SV Gel
and PCR Clean-Up System (Promega, San Louis, CA)UBhe concentrations of PCR
products were fluorometrically quantified using tid¢anoDro® ND-2000c UV-Vis
spectrophotometer. PCR products obtained from iddal reactions were digested separately
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with Hhal (for amoA), Mspl (for nosZ), Rsal (for pmoA) restriction enzymes in 4d volume
containing approximately 200 ng purified PCR pradu@0U of the restriction enzymes
(BioLabs, Sydney, Australia), Ol BSA and 1ul of 10 x NE Buffer. Digests were incubated
at 37°C for 3 h, followed by 95°C for 10 min to déeate the restriction enzyme. Terminal
restriction fragments (TRFs) were resolved on ahRBISM 3500 Genetic analyzer (Applied
Biosystems, CA, USA). During the fragment analyseswere unable to successfully resolve
all replicates for each treatment. Therefore, osliccessful replicates were used for
downstream analyses.

Functional measurements

Soil gas flux for nitrous oxide (D) and methane (CHiwere monitored by placing 20 g of
soil from each microcosm in a glass jar (12 cm klepd cm diameter, Ball, USA), and then
sealing with a gas-tight lid, which had a rubbempsger in the middle. Gas samples (12 ml)
were collected in 15 ml gas-tight syringes at 0,a8@ 60 min after sealing. Gases were
measured in an Agilent-7890a gas chromatograplppgdiwith a flame ionization detector
(FID) and an electron capture detector (ECD) (AgilEechnologies, Wilmington, DE, USA).
A linear model was then applied to estimate theflgagate inside the jar headspace (Matthias
et al., 1980; Martinset al., 2017) and expressed as micrograms g/ CHs-C - (ug N2O-
N/CH.-C g? soil hit). Note that one of the limitations of our workhigt measuring the absolute
consumption of RO and CH in soil (functions driven by nosZ and pmoA) is rexhely
challenging. Instead, in our study, we relateddiversity of these genes with the flux of®I
and CH. Nitrate availability after incubation (our suredg of nitrification) was measured from
KoSOy extracts as explained in Delgado-Baquesdizal., (2013). Dissolved organic C (DOC)
was measured -as described by Jones and Will€6}20

Data analysis. diversity of functional genes

Raw T-RFLP data were analysed using the GeneMagpspftware (Applied Biosystems)
with the advanced peak detection algorithm. A Geaa$00-LIZ internal size standard was
applied to each sample. The T-RFLP profiles weadyaed using a local southern size calling
method (peaks between 50 and 650 bp in size) qrehla amplitude threshold setting of 50,
using Genemapper version 40 (Applied BiosystemR}: peaks that differed by less than 1 bp
were binned into the same fragment. The relativeriscence abundances of all TRFs were
exported for microbial community analysis. A binaable of peak presence/absence was
generated and exported for further statistical ywislfor determining the Shannon diversity
index (Singhet al., 2006).

Testing the relationship between microbial diversity and specialised soil functions.

We used two independent approaches to analyseataset (a P-value and a non P-value
approach). First, we tested for differences in fiumal diversity and key processes across
dilution treatments using non-parametric PERMANOaffalyses (PRIMER-E Ltd., Plymouth
Marine Laboratory, UK), with dilution as a fixedctar (Anderson 2001). We then used the
distance based linear model (distim function, Mdar& Anderson 2001) to evaluate the
correlation between the diversity (Shannon) witlunctional gene and specialized functions.
This is a non-parametric method. As we did notdfam our data, we used the Bray-Curtis
distance matrix for these analyses —to reducenthesnce of extreme values. Additionally, as
an alternative statistical approach, we also uge@®nan’s correlation analysis to evaluate the
correlations between microbial functional diversatyd specialized functions. We conducted
partial correlation analysis to evaluate any pagitifluence of abundance of functional gene
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(QPCR data) and substrate availability (dissolvegaonic carbon (DOC) content) in our
conclusions (see Delgado-Baquerét@l., 2016a for a similar approach).

We then used a non P value dependent approaclalaaéy two potential fits for the
relationship between microbial functional diverdéynmonia-oxidizing archaea (usiagoA
gene), NO reducing bacteria (usingpsZ gene), and methanotrophs (usprgoA gene)] and
their corresponding specialized functions at the $ites using two characteristic functionally
redundant (logarithmic model) vs. non-functionaluedancy (linear model describing at least
proportional losses) models. Best model fits waskeded by Akaike information criteria
(AICc; Burnham & Anderson 2002) where a lower ANzdue represents a model with a better
fit. AICc is a corrected version of AIC that is hig recommended when dealing with small
sample sizes, as in our case (Burnham and And@@0B). We further used a difference in
AICc values of 28AICc > 2) to determine substantial differences lestavmodels (Burnham
and Anderson 2002; Burnhaebal., 2011). The analysis was performed using R package
(https://www.r-project.org/)We used the Im functions from R to conduct thesdyses. For
the logarithmicmodel we used this commarioh(y ~ log(x)). Information on the AICc index
was obtained using the package MuMIn from R (Ba&0h8).

Results

Recovery of microbial abundance

After a six-week incubation, we measured the abooelaf functional genes 6 reducing
bacteria usingosZ gene; methanotrophs usipigioA gene and ammonia oxidising archaea and
bacteria usin@moA) using gPCR - as a proxy for biomass of functigraups in our soil
microcosms from two different sites (Soil A and E)ur results showed that microbial
abundance had successfully recovered in all dityedsiution microcosms. As such, we did
not detect significant differences for microbialuadance levels across different dilution
treatments (PERMANOVA P > 0.05; Fig. 1).

On the contrary, T-RFLP analysis showed significdifterences in the diversity
(Shannon) of MO reducing bacteria (usimpsZ gene); methanotrophs (usipgoA gene); and
ammonia oxidising archaea (usiagoA) for both sites (PERMANOVA P < 0.05; Fig. 2).
Shannon diversity for these functional genes wagsyd positively and significantly related to
richness in both soil$?(< 0.05).

Links between functional diversity and specialized functions

We observed significant correlations between therdity of functional groups and their
specialized functions for both soil types usingthtee models tested (Fig. 3). The values of
specialized functions across different dilutions slnown in Fig. S1. These correlations were
maintained after using an alternative non-paramefsproach (Spearman; Table S2).

To account for the influence of functional generadance and substrate availability on
the functional diversity- specialized function tedaship, we conducted partial correlations
using microbial functional diversity as a prediotdisoil specialized functions and accounting
for functional gene abundance (gPCR data) and sibstvailability (DOC) (Table S3; Fig.
S2). In general, the results were similar to thatisgerved in Fig 3 where functional diversity
was significantly correlated to specialized funeoAs NQ concentration is also known to
regulate NO production we conducted further partial correlatianalysis using nosZ
functional diversity as a predictor ob® flux controlled by N@ concentrations. Our results
showed significant correlations of functional dsigy of denitrifiers with NO flux even after
accounting for nitrate production (Table S4).

Overall, statistical modelling did not demonstrdtenctional redundancy in the
relationship between microbial functional diversiyd soil processes (Table 2). In fact, we
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observed little functional redundancy in our resullhus, the redundant (logarithmic)
relationships were observed only in two cases dioly the relationship between functional
diversity and NO flux and NQ production at site A (Table 2). In the rest of dases - 4 out
of 6 a proportional loss or not clear functionaluedancy was detected (Table 2).

Discussion

Our findings provide experimental evidence thatrob¢al functional diversity positively
relates to three important specialized ecosystemstifons (nitrification, denitrification and
methane flux) in terrestrial ecosystems. As suadh fiadings provide experimental support to
previous observational studies linking microbialdtional diversity with ecosystem functions.
These results were maintained after accountingpfatential effects of functional gene
abundance and substrate availability. Moreoveth&ranalyses provided evidence for little
functional redundancy in the relationship betweercrobial functional diversity and
specialized functions. This knowledge is essefialieveloping a predictive understanding of
functional consequences for microbial communitypoeses to environmental perturbations
(Girvanet al., 2005; Singtet al., 2014; Blaseet al., 2016).

A positive correlation was observed in this studween CH flux, NOs production,
and NO flux and the functional diversity pimoA genes (for methanotrophs)noA genes (for
ammonia oxidisers) anabsZ genes (for denitrifiers). Thus, any reductionshie diversity of
amoA genes derived from biotic or abiotic changes mighgely reduce the availability of
nitrate in terrestrial ecosystems -h (Robertsonré&fféhan,et al., 2007). Moreover, reductions
in the diversity of methanotrophgnfoA genes) and denitrifiersndsZ genes) could have
potential negative consequences for climate reigmain Earth by increasing the amount of
methane and PO released to the atmosphere. Both methanotrgptgNgene) and denitrifiers
(nosZ genes) are essential microbial communities irestrial ecosystems as they constitute
the ultimate barriers that reduce the release tdma@reenhouse gases £ihd NO gasses -
from deeper soil layers to the atmosphere (Satigh., 2003; Heimann and Reichstein, 2008).
This finding is supported by previous experimemtatk in water (Peteet al., 2011; Delgado-
Baquerizcet al., 2016b) and soil (Phillipatt al., 2013) that have reported positive relationships
between microbial diversity of specialized microlketh highly specialized functions.

In accordance with our hypothesis, the results destnate that specialized functions
(Levineet al., 2011; Huet al., 2015a, Phillipott al., 2013) are highly sensitive to losses in
functional diversity because they require a spegfiysiological pathway and/or are carried
out by a phylogenetically clustered group of orgars (Schimel and Schaeffer, 2012; Wood
et al., 2015). In particular, we found little function@dundancy in the relationship between
microbial functional diversity and specialized ftinas (only 2 out of 6 cases were statistically
identified as functionally redundant). This is alsoagreement with previous experimental
assays in freshwater ecosystems (Delgado-Baquetrialo, 2016b) and ultimately indicates
that specialised functions are potentially sensity losses of microbial diversity in natural
settings. Identifying the reasons for the repodédterences in the shape of the relationship
between functional diversity and specialized fumtsi using two single soils is challenging, an
out of the scope of this paper, however, our ressiiggest that the shape of the microbial
functional BEF relationship seems to be considtmndlifferent types of processes in N cycle
and the same model was selected for denitrificato nitrification rates in soils A
(logarithmic) and B (linear; Table 2).

It can be argued that functional gene abundanceabstrate availability can influence
the relationship between biodiversity and functionsur results. Our results provide evidence
that the significant relationship between microbiahctional diversity and specialized
functions is maintained after statistically conlirg for effects of functional gene abundance
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and substrate availability. Also, we would likehighlight that we do not expect any effect on
our conclusions by the use of T-RFLP analyses mstudy. Despite low resolution, T-RFLP
has been used to determine the diversity-funcetationships in several studies (Korhomen
al., 2011; Delgado-Baquerizet al., 2016a). Recent studies have provided evidendeTtha
RFLP and next generation sequencing (including gfgdsequencing and MiSeq) provide
similar results in terms of diversity estimationafvDorstet al., 2014; Delgado-Baquerizs

al., 2016a). This technique is especially efficiemtdetermining the diversity and composition
of specialized microbial groups using functionahgg wherein the diversity is low, and the
groups represent only a minor fraction of the olNengcrobial community (Stralist al., 2004;
Singhet al., 2007; Huet al., 2015b). Overall, we were able to create stromgtional diversity
gradients in our microcosms and these provideditisam appropriate system to explore the
functional responses of changes in microbial diyeend the consequences of these changes
for the specialized functioning of three importamictions for the soil ecosystem.

Together, our study provides experimental evidethes, similar to what has been
reported for plant functional diversity, microbi&inctional diversity largely influence
important soil processes associated with the mtiolu of NG, and fluxes of MO and CH.

We also provide evidence that the correlation betwkinctional diversity and specialized
functions is robust to any effects from functiogahe abundance and substrate availability.
Our results further suggest that there is littlechional redundancy in the relationship between
microbial functional diversity and associated spkoed processes. Together, our study
indicate that loss of soil microbial functional drgity associated with changes in biotic and
abiotic environmental factors could have importrisequences for specialized soil functions
in terrestrial ecosystems.
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783  Table 1.Environmental characteristics, location and smbpgrties of sampling sites.
784

Sampling sites

Environmental variables Site A (Goolgowei mallee) Site B (Warraderry state forest)

Rainfall (mm yeat) 400 657

Latitude -34.99803 -33.72992

Longitude 145.72637 148.20335

Soil texture Clay loam Sandy clay

Clay % 32 37

pH (H:0) 6.01 5.68
Total carbon (96) 1.73 1.84
Total nitrogen (%6 0.13 0.15
NH4*-N (mg kg4 5.23 4.90
Olsen P (mg kt})° 9.58 6.93
MB-P (mg kgl)c 21.64 22.8

785

786 2 Measured with a CN analyzer (Leco CHN628 SerigSCQ Corporation, St Joseph, Ml,
787  USA) following the Dumas combustion method.

788  PAnalysed colorimetrically (Sims et al., 1995) frsépSQ; 0.5 M soil extracts using a 1:5 soil:
789  extract ratio as described in Jones and Willetdo§20

790 ®Measured by NaHCgextracts of the Olsen method (Watanabe & Olse@5)19
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814 Table 2. Model fit statistics and AICc index describing tredationship between microbial
815 diversity and ecosystem functions. AICc measuresdlative goodness of fit of a given model,
816 the lower its value, the more likely it is thatghmodel is correct. Two models witmaICc
817 value > 2 are considered to be substantially difierLogarithmic: Y =a + b - log(X); Linear:
818 Y=a+b-X

819
820
Selected
Gene Function Site Model R2 Formula AlCc DeltaAlCc  Model(s)
Nitrate
amoA production A Logarithmic  0.80 Y = 0.0699 + log (0.1581X) -94.38 0.00 v
Linear 0.75 Y =-0.0506 + 0.1203X -89.73 4.65
Nitrate
amoA production B Logarithmic  0.81 Y = 0.1196 + log (0.1522X) -120.38 4.67
Linear 0.85 Y =-0.0235 + 0.1395X -125.05 0.00 v
nosZ N2O flux A Logarithmic 0.58 Y =0.0026 + log (-0.0028 X) -197.85 0.00 v
Linear 0.49 Y = 0.0047 -0.0018X -193.91 3.94
nosZ N2O flux B Logarithmic  0.65 Y = 0.0051 + log (-0.0045X) -237.04 2.85
Linear 0.69 Y =0.0078 -0.0027X -239.89 0.00 v
pmoA Methane flux A Logarithmic 0.05 Y =-1.609e-04 + log (-2.536e-05 X -322.11 0.00 v
Linear 0.04 Y = -1.444e-04 -1.502e-05 X -321.99 0.12 v
pmoA Methane flux B Logarithmic 0.60 Y =-1.841e-04 + log -8.459e-05X)  -410.16 5.07
Linear 0.67 Y =-9.603e-05 -7.439e-05X -415.23 0.00 v
821
822

20



