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Abstract

We lack a defined suite of attributes that alloviaugniversally predict the distribution of bactgri
diversity across and within globally distributedimnes. Using data from a global survey, including
237 locations and multiple environmental predicteve found that only ultraviolet light, forest
environments, soil carbon and pH can be considaedignificant and globally consistent
predictors of soil bacterial diversity, valid withiand across biomes (arid, temperate and
continental). Bacterial diversity always peakedyrasslands, with moderate to low carbon and
ultraviolet light levels, and high soil pH. Usinigese environmental data, we generated the first
global predictive map of the distribution of soddberial diversity. Our work helps to identify a
unique set of environmental attributes for univiysaredicting the distribution of soil bacterial
diversity. This knowledge is key to help predictaobes in ecosystem functioning and the

provision of essential services under changingrenments.

Keywords. a-Diversity; Terrestrial ecosystems; Arid; ContireniTemperate; cross-biome.



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

I ntroduction

Biodiversity is critically important for the maimiance of ecosystem functions and services that
are essential for human well-being (Hoopeal. 2005; Cardinalest al. 2012). Human activity
over the past 500 years (the Anthropocene) hastedsa substantial reductions in biodiversity
(Dirzo et al. 2014), which also affect the diversity of soil nmorganisms (Maestret al. 2015).
Bacterial alpha diversity (the number of bactephllotypes) plays a critical role in driving
multiple soil processes including nutrient cyclitiger decomposition, toxin degradation, gases
emissions and plant productivity (Bodelier 201%krEret al. 2012; Philippotet al. 2013; Jinget

al. 2015; Delgado-Baquerizet al. 2016a; 2017). We have a good understanding of @jerm
environmental predictors of soil bacterial alphaedsity (hereafter, bacterial diversity) in
terrestrial ecosystems from local to global scéte=® Fierer 2017 for a recent review). These
environmental factors include (1) soil propertiegls as pHLauberet al. 2009), carbon and
nutrient contenfWaldropet al. 2006; Delgado-Baqueriza al. 2017) (2) climatic factors such as
rainfall amount (Maestret al. 2015), air temperatuf@houet al. 2016) and climatic variability
(Delgado-Baquerizet al. 2016b), and to a lesser extent, (3) plant attrdb(@rowtheret al. 2014;
Proberet al. 2015). However, many others factors such as plamgpy productivity and
ultraviolet radiation have been largely neglectedj@bal predictors of bacterial diversity; being
all these key factors shaping plant biodiversityafiderness 2010; Isbedl al. 2011; Reiclet al.
2012). Despite this knowledge, we still lack a defl suite of attributes that will allow us to
universally predict the distribution of bacterialersity across and within globally distributed
biomes. We know that specific environmental fackush as soil pH are strong and consistent
drivers of bacterial diversity. Soil pH has beenwh to affect bacterial diversity across multiple
terrestrial environments (Laubetr al. 2009; Rousket al. 2010; Ramirezt al. 2014; Delgado-
Baquerizoet al. 2016a). The study of other strong and consistesttajlpredictors of bacterial
alpha diversity across different biomes has, howeeenained largely neglected, despite the fact
that bacterial alpha diversity is intimately invet/in many global environmental processes.

A clear and unambiguous suite of global predictdrisacterial diversity (valid across and
within biomes), other than soil pH, remains elusaeseveral reasons. First, most previous studies
have focused on specific regions on Earth. Howaverknow that the identity and importance of
environmental predictors of bacterial alpha diwgrsiften shift across biomes. For example,

Maestreet al. (2015) found that aridity is the major driver ofcberial alpha diversity in global
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drylands. Similarly, Zhowt al. (2016) suggested that air temperature mediatesneoal-scale
diversity of microbes in forest soils from North &nta. In temperate ecosystems from Scotland,
Delgado-Baquerizet al. (2017) demonstrated that soil nutrient content avagong predictor of
bacterial diversity in soils. Thus the widespreagl@ability of these environmental factors as
within and cross-biome predictors of bacterial dsity is questionable. Second, many studies have
used short environmental gradients to predict battalpha diversity, failing to identify non-
linear (e.g. bimodal) relationships that are ngiaapnt over short environmental gradients. For
example, using a meta-analytical approach, Hendeeslal. (2017) suggested that the direction
of the relationship between major environmentalehs (temperature and pH) and bacterial
diversity are largely inconsistent at macroecolafgiscales. Wide ranges of values in
environmental factors, including high and low levef temperature and pH, must be considered
simultaneously in order to adequately identify shape and direction of the relationship between
environmental variables and alpha diversity. Finathany previous studies have evaluated the
role of single environmental drivers in the distition of bacterial alpha diversity in isolation. It
is clear, however, that multiple environmental jiceats need to be considered simultaneously in
order to adequately identify the global predictofsbacterial diversity. More importantly, the
universal drivers of bacterial alpha diversity haever been assessed using data from multiple
globally distributed terrestrial biomes, which hgrevented us from identifying a unique set of
environmental attributes that could be used toiptelde distribution of bacterial diversity across
and within globally distributed terrestrial biomes

Herein, we used the global dataset available eritom Delgado-Baqueriza al. (2018a)
to produce a comprehensive catalogue of universalliyl predictors of soil bacterial diversity
(number of bacterial phylotypes) that apply withimree widely-distributed biomes: arid,
continental and temperate ecosystems, and acresss We used the machine learning algorithm
Random Forest to provide a holistic view of thevensal predictors of bacterial diversity. Finally,
we used Structural Equation Modeling to achievgstesn-level understanding of the relationships
among major universal predictors and bacterialditye We expected soil pH to be a universal
driver of bacterial diversitfFierer and Jackson 2006; Laulserl. 2009; but see Maestet al.
2015; Hendersho#t al. 2017). We aimed to move beyond the classical pHebiat diversity
relationships, and identify further universal patdis of bacterial diversity that could be used
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across widely different biomes. Also, using envimamtal information, we aim to generate a

global atlas for bacterial diversity across thebglo

Material and M ethods.

Field survey and soil sample collection

A detailed description of the dataset used inljser is available from Delgado-Baqueratal.
(2018a). This dataset has been used to identifypkegictors and map the relative abundance of
dominant bacterial taxa. The original dataset (@féee ‘Global Dataset’) included 237 locations
across a wide range of ecosystem types (forestssignds, and shrublands) with markedly
contrasting vegetation, climate and soils. Soil @ancollection took place between 2003 and
2015. The coordinates of each site were recondedu with a portable GPS, and the ecosystem
type (grassland, shrubland, or forest) of eachtiocaecorded. At each site, a composite soil
sample (uppermost 7.5 cm) was collected under the&d oommon vegetation microsite present at
a site. These microsites included trees, shrulassgs and open. After field collection, each soil
sample was separated into two sub-samples, onehwhas immediately frozen at -20 °C for
molecular analyses, and the other air-dried forgbal analyses.

PCR-based 16S rRNA gene analyses

Soil DNA was extracted using the Powersoil® DNAlddimn Kit (MoBio Laboratories, Carlsbad,

CA, USA) according to the manufacturer’s instrusoA portion of the bacterial 16S rRNA gene
(V3-V4 region) was sequenced using the Illlumina &jplatform and the 341F/805R primer set.
Bioinformatic processing was performed using a doation of QIIME (Caporaset al. 2010),
USEARCH (Edgar 2011) and UPARSE (Edgheal. 2013). The resulting phylotype table was
rarefied to 10000 sequences per sample. We furémeoved phylotypes (defined as operational
taxonomic units at the 97% similarity) that wer@resented by only a single read across all
samples. In addition, we removed any archaealraplast and mitochondrial phylotypes. The
relative abundance of major phyla across biomskasvn in Fig. S1. Detailed information on the
bacterial community composition of the Global datasan be found in Delgado-Baquergtal.
(2018a). We used bacterial richness (hnumber ofbatiphylotypes) as our measure of bacterial
diversity because it is the simplest measure aitersity, and is typically used to describe both

belowground and aboveground organisms (Gotelli 8@t 2001). However, bacterial richness
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is well-known to be highly correlated with othemplah diversity indexes including Shannon
diversity and Phylogenetic diversity (see Figs 8@ 88 in Delgado-Baqueriabal. 2016a).

Environmental predictors

We measured soil pH, texture, total organic carfgml C), total nitrogen (soil N) and total
phosphorus (soil P) concentrations using standdydratory methods. Soil pH was measured in
all soil samples with a pH meter, in a 1:2.5 mastume soil and water suspension. Texture (%
of fine fractions: clay and silt) was determinedading to Kettleet al. (2001). The concentration
of soil total organic carbon (C) was determinedngsa wet chemistry method described in
Anderson and Ingramm (1993). Soil total N was messwith a CN analyzer (Leco CHN628
Series, LECO Corporation, St Joseph, MI, USA) andltphosphorus (P) was measured using a
SKALAR San++ Analyzer (Skalar, Breda, The Nethedgrafter digestion with sulphuric acid.

We obtained information on maximum and minimum terapure, precipitation
seasonality, and mean diurnal temperature rangeRMior all sampling locations from the
Worldclim database (www.worldclim.org), which ha& &m resolution (Hijmanst al. 2005). In
addition, for each site we estimated the Aridityddr (mean annual precipitation/potential
evapotranspiration) from the Global Potential Evegruspiration database (Zometral. 2008),
which is based on interpolations provided by WohohC(Hijmans et al. 2005). We used the
Aridity Index rather than mean annual precipitatletause aridity includes both mean annual
precipitation and potential evapotranspiration, entherefore a better measure of the long-term
water availability at each site.

We used the Normalized Difference Vegetation In(®\VI) as our proxy for net plant
primary productivity (NPP, Pettorelét al. 2005). This index provides a global measure of the
"greenness" of vegetation across Earth's landsdapasgiven composite period, and thus acts as
a proxy of photosynthetic activity and large-scakgetation distribution. NDVI data were
obtained from the Moderate Resolution Imaging Speatliometer (MODIS) aboard NASA's
Terra satellites (http://neo.sci.gsfc.nasa.gov/e ddlculated the monthly average value for this
variable between the periods of 2003 and 2015 kM @esolution), when all soil sampling was
conducted. We obtained information on annual uitdav index (UV index) from the NASA's
Aura satellite (https://neo.sci.gsfc.nasa.gov),chhinas a 50 km resolution. The UV index is a
measure of the intensity of UV radiation rangingnir 0 (minimal UV exposure risk) to 16

(extreme risk).
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Statistical analyses within three major biomes

In this section, we focused on those locationsabich we had sufficient information to model
the distribution of bacterial alpha diversity withbiomes. In particular, we focused on 223
locations across six continents (Fig. 1) that ideldithree major global biomes: (1) amd<102),

(2) temperater(= 81) and (3) continentah & 40) ecosystems. Together, these biomes covex mor
than 70% of terrestrial ecosystems on Earth (exetudntarctica). The biome grouping used in
this study is based on the Kodppen climate clasgiba, one of the most widely used climate
classification systems. We then conducted crosswianalyses using the 237 locations included
in the Global dataset, which also included tropaad polar ecosystems.

Random Forest analyses

We used Random Forg@reiman, 2001as described in Delgado-Baquerigoal. (2016a) to

identify the universal predictors of bacterial dsity across three major biomes: arid, continental

and temperate. Our list of predictors includedawiiplet light (UV light), climate (Aridity Index,
precipitation seasonality, maximum and minimum terafure, diurnal temperature range), soil
properties (texture, soil C, N, P and pH), and ta&tyen types (presence/absence of forest or
grassland). Shrublands were not available forialnes, and were not explicitly included in our
analyses. Random Forest is a novel machine-learm@ilggrithm that extends standard
classification and regression tree (CART) methogsriating a collection of classification trees
with binary divisions. Unlike traditional CART aryaks, the fit of each tree is assessed using
randomly selected cases (33.3% of the data), wdnetwithheld during its construction (out-of-
bag or OOB cases). The importance of each predveioable is determined by evaluating the
reduction in prediction accuracy, i.e., increasthenmean square error between observations and
OOB predictions, when the data for that predicerandomly permuted. Random Forest is
particularly recommended for datasets includingegatical variables or variables with non-
parametric distributions. Moreover, unlike multi-de inference using linear regressions or
regression tree analyses, Random Forest allewigt@rablems associated with multicollinearity
in multivariate analyses by building bagged treseanbles and including a random subset of
features for each tree. All analyses were condugsiolg the rfPermute package (Arcleeral.
2016) of the R statistical softwarietip://cran.r-project.org/

Regression and ANOVA analyses
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We used linear or quadratic relationships to eveltlze direction and shape of the relationship
among universal environmental drivers and bactdnadrsity as explained in Delgado-Baquerizo
et al. (2016¢). We used one-way ANOVAs to compare therditieof bacteria across vegetation

types: grasslands vs. forests for three biomes.

Structural Equation Modeling

After identifying the universal predictors of bat#é diversity within and across biome, we used
Structural Equation Modeling (Grace 2008) build a system-level understanding of the major
direct and indirect effects of universal predictofsoil bacterial alpha diversity across the globe
(a priori model available in Fig S2). Unlike regression N@VA, SEM allows us to separate
multiple pathways of influence and view them astpaf a system. It is useful therefore for
investigating the complex relationships among teds commonly found in natural ecosystems
(Grace 2006).

We included pH and UV light as polynomial variabiesour SEM (see model selection
for the Global dataset in Table S1). Consequetityse variables were included as composite
variables made up of two components; pH and UV@tidand U\ (Lalibertéet al. 2014). The
use of composite variables does not alter the lyidgrSEM model, but collapses the effects of
multiple conceptually-related variables into a #ngomposite effect, aiding interpretation of
model results. With a good model fit, we were tfiee to interpret the path coefficients of the
model and their associated P values. The probalilit a path coefficient differs from zero was
tested using bootstrap resampling. Bootstrappipgaferred to the classical maximum-likelihood
estimation in these cases because in bootstrappotmability, assessments are not based on the
assumption that the data match a particular thieafetistribution. The goodness of fit of SEM
models was checked using the following: the Chiasqutest, the root mean square error of
approximation (RMSEA) and the Bollen-Stine bootsttast(Schermelleh-Engedt al. 2003).
SEM models were conducted with the software AMOSIBM SPSS Inc, Chicago, IL, USA).

Mapping of bacterial alpha diversity across thebglo

We used the prediction-oriented regression modbIsE¢Quinlan 1993) as described in Delgado-
Baquerizoet al. (2018a) to predict the distribution of bacterigttad diversity across the globe.
We included the following environmental predictorour model: soil properties (soil C, soil pH
and texture), climate (diurnal temperature rangaximum temperature, minimum temperature,

Aridity Index and precipitation seasonality), neinpary productivity, UV light and major
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vegetation types (forests and grasslands). Onhteeid available for these variables via the ISRIC
(global gridded soil information), Soil Grids
(https://soilgrids.org/#!/?layer=geonode:taxnwrb02f, the European Space Agency
(http://due.esrin.esa.int/page_globcover.php) WieeldClim database (www.worldclim.org) and
NASA satellites (https://neo.sci.gsfc.nasa.gov). 8itknot find high-resolution data for total N
and total P, which were not included in this modébne of these variables were selected as
universal predictors of bacterial diversity (seéob®. Global predictions of the distribution of
major clusters were done on a 25 km resolution §kld used the package Cubist in R to conduct
these analyses (Kuhet al. 2016). Finally, we cross-validated our map usin@ thfferent
approaches. First, we evaluated the correlatiowdsst observed and predicted data using our
global dataset. Second, we used the database liBeatrth Microbiome Project (Thompson et al.
2017), and evaluated the correlation between pretitzacterial diversity in our global map to that

one independently obtained for 2004 soil sampléchiompson et al. (2017).

Results
Our Random Forest models explained 36, 43, 50 d&f46l & the variation in the distribution of
bacterial alpha diversity in arid, temperate andtio@ntal climates and in the whole Global
dataset, respectively. These models provided egaémat only UV light, forest environments,
soil C and pH are consistent predictors of badtelinersity across three major biomes: arid,
continental and temperate climates (Fig. 1b). Tleesg&ronmental variables were also important
predictors of bacterial diversity across biomeg.(Rib). The relative importance of universal
predictors of bacterial diversity shifted acrossmbes (Fig. 1b). Thus, soil C, soil pH and UV light
were the most important universal predictors oftéxaal diversity for temperate, continental and
arid biomes, respectively (Fig. 1b).

Soil bacterial alpha diversity was lower in forettan grasslands (Figs. 2 and 3). Overall,
UV light had a hump-shaped (or mostly negativegtrehship with bacterial richness (Figs. 2 and
3). Bacterial diversity showed a positive or hunhyzed relationship with soil pH, and in general,
was negatively related to soil C (Fig. 2). In aedosystems, soil C followed a hump-shaped
relationship with bacterial diversity (<2%; Fig. 2@n general, similar patterns (but see soil C)

were observed when all biomes were analyzed togaththe Global dataseh (= 237; Fig. 3),
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which also included samples from polar and tropitaimes. Model selection is available in Table
S1.

The Aridity Index was the most important climatiegictor in arid ecosystems, showing
a positive relationship with bacterial alpha divigr¢Fig. S3). Precipitation seasonality, which
exhibited a hump-shaped relationship with bactetiaérsity, was the most important climatic
predictor in temperate ecosystems (Fig. S3). Ripathaximum temperature was the most
important climatic predictor for continental clireat and showed a positive relationship with
bacterial alpha diversity (Fig. S3).

Using only the four widespread predictors (UV ligeoil C, soil pH and vegetation type;
Fig. 4), our SEM was able to explain more than (&lP0) of the variation in the distribution of
bacterial diversity across the globe. Qupriori models attained an acceptable/good fit by all
criteria in all cases, and thus post hoc changes were made. Soil C had a direct negatieetef
on bacterial diversity (Fig. 4). Soil pH had a hustaped effect on alpha diversity (plotted in Fig.
3). Forest environments showed a direct negatifextedn alpha diversity (Fig. 4). UV light had
a direct negative (hump-shaped) effect on bactedigkrsity (plotted in Fig. 3). Forest
environments showed indirect negative effects grhaldiversity via reducing soil pH and
increasing soil C (Fig. 4).

Finally, using environmental information, we geriedaa global map showing the
distribution of soil bacterial alpha diversity (Fig). Confirming our previous results, the cubist
algorithm selected soil pH and C, UV light and vagjen type as important predictors for bacterial
diversity. This model also selected Aridity Indemaximum temperature, diurnal temperature
range, NPP and soil texture as important predictorg global map indicate that diversity of
bacteria peak at global regions typically domindigtigh pH, low C, grasslands and intermediate
levels of radiation (Fig. 5; Fig. 6). Predicted aiberved values for alpha diversity in this study
were positively and significantly correlated (Fhy. Pearson’s r = 0.5F, < 0.001). Similarly,
predicted and observed values for alpha diversigyewpositively and significantly correlated
(Pearson’s r = 0.4P, < 0.001) using independent data from Thompsoih €2@l17).

Discussion
Our work suggests that, from the wide range ofcseteenvironmental predictors included here,

only UV light, forest environments, soil C and plncbe considered as significant universal
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predictors of soil bacterial diversity valid withend across a wide range of biomes differing
markedly in vegetation, climate and soil types. @udings indicate that bacterial diversity is
consistently lower in forests than grasslands, Wtk pH and relatively high carbon contents
(>5%) across arid, temperate and continental bidifiigs 2 and 5). Soil pH is known to be one of
the major environmental drivers of bacterial divtgrat the global scale (Fierer and Jackson 2006),
and therefore was expected to be a significantagldtiver of bacterial diversity across and within
global biomes. Nonetheless, the importance of pkh &sajor predictor of diversity has been
recently questione(Maestreet al. 2015; Hendershadt al. 2017). Our study supports previous
findings of an overall positive (or hump-shapedatienship between soil pH and bacterial alpha
diversity (Lauberet al. 2009), and provides strong support for the notioat tsoil pH is an
important predictor of bacterial diversity worldwidMore importantly, our analyses provide
strong evidence that UV light, soil C content anabldl vegetation type (foredft grassland) should
also be considered as universal predictors of #utebial alpha diversity globally across major
biomes. Together, the identified four universaldictors could predict more than half of the
variation in the global distribution of bacterialversity in our Random Forest and Structural
Equation Models. Using environmental informatiore generated a global map predicting the
distribution of bacterial alpha diversity. Such amreflects the results from the Random Forest
and SEM models, using an independent Cubist maddlultimately provides a novel atlas of the
alpha diversity found in terrestrial ecosystems.

Ultraviolet light had an outstanding capacity tedict the distribution of bacterial diversity
within and across biomes worldwide. Such a stralgtionship between UV light and bacterial
diversity had not been described previously foruratterrestrial ecosystems worldwide. In
general (two out of three biomes, and when anatyaihdata together), we found an overall hump-
shaped relationship between UV light and diversitypacteria. In other words, the diversity of
bacteria peak at intermediate levels of UV lighighlevels of UV light are known to reduce the
abundance of bacteria of multiple species (Saetad. 2012), supporting our results. More
interestingly, an increase in UV light from veryddo intermediate levels of intensity positively
related to diversity of bacteria. Such a resulinisagreement with the classic intermediate
disturbance hypothesis (IDH; Wilkinson 1999), whstlggest that species richness is maximized
when ecological disturbance is neither too high tooar low. The IDH hypothesis suggest that

intermediate levels of environmental disturbancepsut the coexistence of species capable of
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surviving both low and high levels of disturbancétjmately supporting the highest level of
biodiversity. Our results provide novel evidencattaV light should be considered as a universal
predictor for bacterial diversity. Another exampé this relationships is the hump-shaped
observed correlation between soil pH and bactdinarsity. A larger number of bacterial species
can co-exist at intermediate neutral levels of pH.

Soil C content was negatively related to bactefieérsity within three major biomes and
across all biomes. A strong negative correlatiorivben soil C and bacterial diversity has been
shown recently in temperate ecosystems from Sab{Belgado-Baquerizet al. 2017). Such a
negative correlation might be explained by thersiroompetition to exclusion effect of microbial
biomass on alpha diversity in locations with higlidls of organic matter (Waldrabal. 2006).
Locations with higher soil C concentrations ofteport a greater abundance of soil bacteria and
fungi, as supported by distributional maps of $diktocks (Wiedegt al. 2015)and microbial
biomass (Fierer 2017). The only exception to tkegative relationship occurs in arid zone soils
with very low C contents (<2%). In arid, low carbanils, bacterial diversity is positively
correlated with soil C. Specifically, we found anmprshaped relationship between soil C and
bacterial diversity in arid environments, suppatihe notion that soil C content limits the alpha
diversity of bacterial communities in extremely Igail C environments (Fig. 2). This result has
previously been reported in terrestrial ecosysteitisvery low C contents (e.g., arid and semiarid
environments; Maestet al. 2015; Neilsoret al. 2017), or environments that included soil samples
with extremely low level of soil C content (e.g. tArctica; Delgado-Baquerizet al. 2016a,;
2018b).

Compared with grasslands, forest ecosystems haleed levels of bacterial diversity
across biomes (arid, continental and temperateystams), and globally. Thus, ecosystem type
(forestvs. grasslands) should also be considered as a gloddictor of bacterial alpha diversity.
This result accords with results from Crowtlkeeal. (2014), who found an overall negative effect
of forest environmentgf. grasslands in North America. The reported negatalationship
between forest environments and bacterial alphersity might be related to the indirect negative
effects of forest environments on bacterial divgngia increasing soil C and reduced soil pH (Fig.
4), but also the strong competition of bacteriahwitants and other soil organisms in rich and
highly productive environmenfgValdropet al. 2006; Eldridgest al. 2017). Supporting this notion,
Terratet al. (2017; France) and Delgado-Baquereal. (2018b; Australia) found that croplands
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and grasslands had greater diversity of bacteaa torests. Our results suggest that grasslands,
which are known to be a global hotspot of biodiitgrdRouxet al. 2012), also have a higher level
of alpha diversity than other terrestrial ecosystesuggesting that our results are consistent with
our understanding of how land use change (e.g.d&ating for farming) might affect microbial
diversity. Conversion of forest to pasture is iasiag markedly to meet global food demand, and
is forecast to increase by 110% by 2050 (Tilreal. 2011). Our study suggests that conversion
of forest to grasslands will be accompanied bydases in bacterial alpha diversity. The
importance of land use conversion as a major do¥éacterial alpha diversity has recently been
highlighted by Szoboszlagt al. (2017) for terrestrial ecosystems across Europggesting a
positive effect of forest to pasture and croplaadversion on bacterial alpha diversity. Similarly,
a previous study found an increase in the alpharsity of particular groups of bacteria (e.qg.,
Verrucomicrobia) following conversion from forest to pasture in Aron (Ranjamet al. 2015).

No single climatic variable could predict the distition of bacterial diversity across
biomes. Our results suggest that climatic driverdacterial diversity cannot be considered
globally applicable predictors of bacterial divéysibut that specific influences are limited to
particular biomes. For example, we found that thidify Index, soil temperature and precipitation
seasonality were the major climatic predictors adtbrial alpha diversity in arid, continental and
temperate ecosystems, respectively (Fig. S3). Tresadts accord with the results of studies by
Maestreet al. (2015) and Zhowt al. (2016), who found that the Aridity Index and tengiare
were major predictors of bacterial alpha diversitglobal drylands, and cold forest environments
from North America, respectively. However, our désguggest that only precipitation seasonality
and temperature were important climatic predictofsbacterial diversity in temperate and
continental ecosystems, respectively. The impodasfcseasonality as a predictor of bacterial
diversity was demonstrated by Delgado-Baquestza. (2016b) using a meta-analysis approach.

Together, our results suggest that only a few enwirental predictors including ecosystem
type, UV light and soil C and pH, can be considagkabally-applicable predictors of bacterial
alpha diversity within and across biomes worldwid@lkeis information can potentially be used to
manage these soil organisms and the processabdyategulate in terrestrial ecosystems across
large areas of the globe. Moreover, this envirortalenformation can be used to predict the
distribution of bacterial alpha diversity worldwidghich allowed us to generate a global atlas of

bacterial diversity. Future studies could use oapping approach to model the responses of soil
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biodiversity under predicted global chance scesaf@og., warming and changes in precipitation
regimes) at the global scale. Our results proviteletic view of the direct and indirect effects o

universal predictors on bacterial alpha diversityis is likely to be an important and useful tool
to help us understand potential changes in econyhitactioning and the provision of essential

services under global change scenarios.
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