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Abstract  32 

 33 

We lack a defined suite of attributes that allow us to universally predict the distribution of bacterial 34 

diversity across and within globally distributed biomes. Using data from a global survey, including 35 

237 locations and multiple environmental predictors, we found that only ultraviolet light, forest 36 

environments, soil carbon and pH can be considered as significant and globally consistent 37 

predictors of soil bacterial diversity, valid within and across biomes (arid, temperate and 38 

continental). Bacterial diversity always peaked in grasslands, with moderate to low carbon and 39 

ultraviolet light levels, and high soil pH. Using these environmental data, we generated the first 40 

global predictive map of the distribution of soil bacterial diversity. Our work helps to identify a 41 

unique set of environmental attributes for universally predicting the distribution of soil bacterial 42 

diversity. This knowledge is key to help predict changes in ecosystem functioning and the 43 

provision of essential services under changing environments. 44 

 45 
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Introduction 63 

Biodiversity is critically important for the maintenance of ecosystem functions and services that 64 

are essential for human well-being (Hooper et al. 2005; Cardinale et al. 2012). Human activity 65 

over the past 500 years (the Anthropocene) has resulted in substantial reductions in biodiversity 66 

(Dirzo et al. 2014), which also affect the diversity of soil microorganisms (Maestre et al. 2015). 67 

Bacterial alpha diversity (the number of bacterial phylotypes) plays a critical role in driving 68 

multiple soil processes including nutrient cycling, litter decomposition, toxin degradation, gases 69 

emissions and plant productivity (Bodelier 2011; Fierer et al. 2012; Philippot et al. 2013; Jing et 70 

al. 2015; Delgado-Baquerizo et al. 2016a; 2017). We have a good understanding of the major 71 

environmental predictors of soil bacterial alpha diversity (hereafter, bacterial diversity) in 72 

terrestrial ecosystems from local to global scales (see Fierer 2017 for a recent review). These 73 

environmental factors include (1) soil properties such as pH (Lauber et al. 2009), carbon and 74 

nutrient content (Waldrop et al. 2006; Delgado-Baquerizo et al. 2017) (2) climatic factors such as 75 

rainfall amount (Maestre et al. 2015), air temperature (Zhou et al. 2016) and climatic variability 76 

(Delgado-Baquerizo et al. 2016b), and to a lesser extent, (3) plant attributes (Crowther et al. 2014; 77 

Prober et al. 2015). However, many others factors such as plant primary productivity and 78 

ultraviolet radiation have been largely neglected as global predictors of bacterial diversity; being 79 

all these key factors shaping plant biodiversity (Mackerness 2010; Isbell et al. 2011; Reich et al. 80 

2012). Despite this knowledge, we still lack a defined suite of attributes that will allow us to 81 

universally predict the distribution of bacterial diversity across and within globally distributed 82 

biomes. We know that specific environmental factors such as soil pH are strong and consistent 83 

drivers of bacterial diversity. Soil pH has been shown to affect bacterial diversity across multiple 84 

terrestrial environments (Lauber et al. 2009; Rousk et al. 2010; Ramirez et al. 2014; Delgado-85 

Baquerizo et al. 2016a). The study of other strong and consistent global predictors of bacterial 86 

alpha diversity across different biomes has, however, remained largely neglected, despite the fact 87 

that bacterial alpha diversity is intimately involved in many global environmental processes. 88 

 A clear and unambiguous suite of global predictors of bacterial diversity (valid across and 89 

within biomes), other than soil pH, remains elusive for several reasons. First, most previous studies 90 

have focused on specific regions on Earth. However, we know that the identity and importance of 91 

environmental predictors of bacterial alpha diversity often shift across biomes. For example, 92 

Maestre et al. (2015) found that aridity is the major driver of bacterial alpha diversity in global 93 



drylands. Similarly, Zhou et al. (2016) suggested that air temperature mediates continental-scale 94 

diversity of microbes in forest soils from North America. In temperate ecosystems from Scotland, 95 

Delgado-Baquerizo et al. (2017) demonstrated that soil nutrient content was a strong predictor of 96 

bacterial diversity in soils. Thus the widespread applicability of these environmental factors as 97 

within and cross-biome predictors of bacterial diversity is questionable. Second, many studies have 98 

used short environmental gradients to predict bacterial alpha diversity, failing to identify non-99 

linear (e.g. bimodal) relationships that are not apparent over short environmental gradients. For 100 

example, using a meta-analytical approach, Hendershot et al. (2017) suggested that the direction 101 

of the relationship between major environmental drivers (temperature and pH) and bacterial 102 

diversity are largely inconsistent at macroecological scales. Wide ranges of values in 103 

environmental factors, including high and low levels of temperature and pH, must be considered 104 

simultaneously in order to adequately identify the shape and direction of the relationship between 105 

environmental variables and alpha diversity. Finally, many previous studies have evaluated the 106 

role of single environmental drivers in the distribution of bacterial alpha diversity in isolation. It 107 

is clear, however, that multiple environmental predictors need to be considered simultaneously in 108 

order to adequately identify the global predictors of bacterial diversity. More importantly, the 109 

universal drivers of bacterial alpha diversity have never been assessed using data from multiple 110 

globally distributed terrestrial biomes, which have prevented us from identifying a unique set of 111 

environmental attributes that could be used to predict the distribution of bacterial diversity across 112 

and within globally distributed terrestrial biomes 113 

 Herein, we used the global dataset available online from Delgado-Baquerizo et al. (2018a) 114 

to produce a comprehensive catalogue of universally valid predictors of soil bacterial diversity 115 

(number of bacterial phylotypes) that apply within three widely-distributed biomes: arid, 116 

continental and temperate ecosystems, and across them. We used the machine learning algorithm 117 

Random Forest to provide a holistic view of the universal predictors of bacterial diversity. Finally, 118 

we used Structural Equation Modeling to achieve a system-level understanding of the relationships 119 

among major universal predictors and bacterial diversity. We expected soil pH to be a universal 120 

driver of bacterial diversity (Fierer and Jackson 2006; Lauber et al. 2009; but see Maestre et al. 121 

2015; Hendershot et al. 2017). We aimed to move beyond the classical pH-bacterial diversity 122 

relationships, and identify further universal predictors of bacterial diversity that could be used 123 



across widely different biomes. Also, using environmental information, we aim to generate a 124 

global atlas for bacterial diversity across the globe.  125 

  126 

Material and Methods.  127 

Field survey and soil sample collection 128 

A detailed description of the dataset used in this paper is available from Delgado-Baquerizo et al. 129 

(2018a). This dataset has been used to identify key predictors and map the relative abundance of 130 

dominant bacterial taxa. The original dataset (hereafter ‘Global Dataset’) included 237 locations 131 

across a wide range of ecosystem types (forests, grasslands, and shrublands) with markedly 132 

contrasting vegetation, climate and soils. Soil sample collection took place between 2003 and 133 

2015. The coordinates of each site were recorded in situ with a portable GPS, and the ecosystem 134 

type (grassland, shrubland, or forest) of each location recorded. At each site, a composite soil 135 

sample (uppermost 7.5 cm) was collected under the most common vegetation microsite present at 136 

a site. These microsites included trees, shrubs, grasses and open. After field collection, each soil 137 

sample was separated into two sub-samples, one which was immediately frozen at -20 ºC for 138 

molecular analyses, and the other air-dried for chemical analyses.  139 

PCR-based 16S rRNA gene analyses  140 

Soil DNA was extracted using the Powersoil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, 141 

CA, USA) according to the manufacturer’s instructions. A portion of the bacterial 16S rRNA gene 142 

(V3-V4 region) was sequenced using the Illumina MiSeq platform and the 341F/805R primer set. 143 

Bioinformatic processing was performed using a combination of QIIME (Caporaso et al. 2010), 144 

USEARCH (Edgar 2011) and UPARSE (Edgar et al. 2013). The resulting phylotype table was 145 

rarefied to 10000 sequences per sample. We further removed phylotypes (defined as operational 146 

taxonomic units at the 97% similarity) that were represented by only a single read across all 147 

samples. In addition, we removed any archaeal, chloroplast and mitochondrial phylotypes. The 148 

relative abundance of major phyla across biomes is shown in Fig. S1. Detailed information on the 149 

bacterial community composition of the Global dataset can be found in Delgado-Baquerizo et al. 150 

(2018a). We used bacterial richness (number of bacterial phylotypes) as our measure of bacterial 151 

diversity because it is the simplest measure of biodiversity, and is typically used to describe both 152 

belowground and aboveground organisms (Gotelli & Colwell 2001). However, bacterial richness 153 



is well-known to be highly correlated with other alpha diversity indexes including Shannon 154 

diversity and Phylogenetic diversity (see Figs S7 and S8 in Delgado-Baquerizo et al. 2016a).  155 

Environmental predictors 156 

We measured soil pH, texture, total organic carbon (soil C), total nitrogen (soil N) and total 157 

phosphorus (soil P) concentrations using standard laboratory methods. Soil pH was measured in 158 

all soil samples with a pH meter, in a 1:2.5 mass: volume soil and water suspension. Texture (% 159 

of fine fractions: clay and silt) was determined according to Kettler et al. (2001). The concentration 160 

of soil total organic carbon (C) was determined using a wet chemistry method described in 161 

Anderson and Ingramm (1993). Soil total N was measured with a CN analyzer (Leco CHN628 162 

Series, LECO Corporation, St Joseph, MI, USA) and total phosphorus (P) was measured using a 163 

SKALAR San++ Analyzer (Skalar, Breda, The Netherlands) after digestion with sulphuric acid.  164 

We obtained information on maximum and minimum temperature, precipitation 165 

seasonality, and mean diurnal temperature range (MDR) for all sampling locations from the 166 

Worldclim database (www.worldclim.org), which has a 1 km resolution (Hijmans et al. 2005). In 167 

addition, for each site we estimated the Aridity Index (mean annual precipitation/potential 168 

evapotranspiration) from the Global Potential Evapotranspiration database (Zomer et al. 2008), 169 

which is based on interpolations provided by WorldClim (Hijmans et al. 2005). We used the 170 

Aridity Index rather than mean annual precipitation because aridity includes both mean annual 171 

precipitation and potential evapotranspiration, and is therefore a better measure of the long-term 172 

water availability at each site.  173 

We used the Normalized Difference Vegetation Index (NDVI) as our proxy for net plant 174 

primary productivity (NPP, Pettorelli et al. 2005). This index provides a global measure of the 175 

"greenness" of vegetation across Earth's landscapes for a given composite period, and thus acts as 176 

a proxy of photosynthetic activity and large-scale vegetation distribution. NDVI data were 177 

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's 178 

Terra satellites (http://neo.sci.gsfc.nasa.gov/). We calculated the monthly average value for this 179 

variable between the periods of 2003 and 2015 (~10 km resolution), when all soil sampling was 180 

conducted. We obtained information on annual ultraviolet index (UV index) from the NASA's 181 

Aura satellite (https://neo.sci.gsfc.nasa.gov), which has a 50 km resolution. The UV index is a 182 

measure of the intensity of UV radiation ranging from 0 (minimal UV exposure risk) to 16 183 

(extreme risk). 184 



Statistical analyses within three major biomes 185 

In this section, we focused on those locations for which we had sufficient information to model 186 

the distribution of bacterial alpha diversity within biomes. In particular, we focused on 223 187 

locations across six continents (Fig. 1) that included three major global biomes: (1) arid (n = 102), 188 

(2) temperate (n = 81) and (3) continental (n = 40) ecosystems. Together, these biomes cover more 189 

than 70% of terrestrial ecosystems on Earth (excluding Antarctica). The biome grouping used in 190 

this study is based on the Köppen climate classification, one of the most widely used climate 191 

classification systems. We then conducted cross-biome analyses using the 237 locations included 192 

in the Global dataset, which also included tropical and polar ecosystems. 193 

Random Forest analyses  194 

We used Random Forest (Breiman, 2001) as described in Delgado-Baquerizo et al. (2016a) to 195 

identify the universal predictors of bacterial diversity across three major biomes: arid, continental 196 

and temperate. Our list of predictors included ultraviolet light (UV light), climate (Aridity Index, 197 

precipitation seasonality, maximum and minimum temperature, diurnal temperature range), soil 198 

properties (texture, soil C, N, P and pH), and vegetation types (presence/absence of forest or 199 

grassland). Shrublands were not available for all biomes, and were not explicitly included in our 200 

analyses. Random Forest is a novel machine-learning algorithm that extends standard 201 

classification and regression tree (CART) methods by creating a collection of classification trees 202 

with binary divisions. Unlike traditional CART analyses, the fit of each tree is assessed using 203 

randomly selected cases (33.3% of the data), which are withheld during its construction (out-of-204 

bag or OOB cases). The importance of each predictor variable is determined by evaluating the 205 

reduction in prediction accuracy, i.e., increase in the mean square error between observations and 206 

OOB predictions, when the data for that predictor is randomly permuted. Random Forest is 207 

particularly recommended for datasets including categorical variables or variables with non-208 

parametric distributions. Moreover, unlike multi-model inference using linear regressions or 209 

regression tree analyses, Random Forest alleviate any problems associated with multicollinearity 210 

in multivariate analyses by building bagged tree ensembles and including a random subset of 211 

features for each tree. All analyses were conducted using the rfPermute package (Archer et al. 212 

2016) of the R statistical software (http://cran.r-project.org/). 213 

Regression and ANOVA analyses  214 



We used linear or quadratic relationships to evaluate the direction and shape of the relationship 215 

among universal environmental drivers and bacterial diversity as explained in Delgado-Baquerizo 216 

et al. (2016c). We used one-way ANOVAs to compare the diversity of bacteria across vegetation 217 

types: grasslands vs. forests for three biomes. 218 

Structural Equation Modeling 219 

After identifying the universal predictors of bacterial diversity within and across biome, we used 220 

Structural Equation Modeling (Grace 2006)  to build a system-level understanding of the major 221 

direct and indirect effects of universal predictors of soil bacterial alpha diversity across the globe 222 

(a priori model available in Fig S2). Unlike regression or ANOVA, SEM allows us to separate 223 

multiple pathways of influence and view them as parts of a system. It is useful therefore for 224 

investigating the complex relationships among predictors commonly found in natural ecosystems 225 

(Grace 2006).  226 

We included pH and UV light as polynomial variables in our SEM (see model selection 227 

for the Global dataset in Table S1). Consequently, these variables were included as composite 228 

variables made up of two components; pH and UV and pH2 and UV2 (Laliberté et al. 2014). The 229 

use of composite variables does not alter the underlying SEM model, but collapses the effects of 230 

multiple conceptually-related variables into a single composite effect, aiding interpretation of 231 

model results. With a good model fit, we were then free to interpret the path coefficients of the 232 

model and their associated P values. The probability that a path coefficient differs from zero was 233 

tested using bootstrap resampling. Bootstrapping is preferred to the classical maximum-likelihood 234 

estimation in these cases because in bootstrapping probability, assessments are not based on the 235 

assumption that the data match a particular theoretical distribution. The goodness of fit of SEM 236 

models was checked using the following: the Chi-square test, the root mean square error of 237 

approximation (RMSEA) and the Bollen-Stine bootstrap test (Schermelleh-Engel et al. 2003). 238 

SEM models were conducted with the software AMOS 20 (IBM SPSS Inc, Chicago, IL, USA). 239 

Mapping of bacterial alpha diversity across the globe.  240 

We used the prediction-oriented regression model Cubist (Quinlan 1993) as described in Delgado-241 

Baquerizo et al. (2018a) to predict the distribution of bacterial alpha diversity across the globe. 242 

We included the following environmental predictors in our model: soil properties (soil C, soil pH 243 

and texture), climate (diurnal temperature range, maximum temperature, minimum temperature, 244 

Aridity Index and precipitation seasonality), net primary productivity, UV light and major 245 



vegetation types (forests and grasslands). Online data is available for these variables via the ISRIC 246 

(global gridded soil information), Soil Grids 247 

(https://soilgrids.org/#!/?layer=geonode:taxnwrb_250m), the European Space Agency 248 

(http://due.esrin.esa.int/page_globcover.php), the WorldClim database (www.worldclim.org) and 249 

NASA satellites (https://neo.sci.gsfc.nasa.gov). We did not find high-resolution data for total N 250 

and total P, which were not included in this model. None of these variables were selected as 251 

universal predictors of bacterial diversity (see below). Global predictions of the distribution of 252 

major clusters were done on a 25 km resolution grid. We used the package Cubist in R to conduct 253 

these analyses (Kuhn et al. 2016). Finally, we cross-validated our map using two different 254 

approaches. First, we evaluated the correlation between observed and predicted data using our 255 

global dataset. Second, we used the database from the Earth Microbiome Project (Thompson et al. 256 

2017), and evaluated the correlation between predicted bacterial diversity in our global map to that 257 

one independently obtained for 2004 soil samples in Thompson et al. (2017). 258 

 259 

Results  260 

Our Random Forest models explained 36, 43, 50 and 57% of the variation in the distribution of 261 

bacterial alpha diversity in arid, temperate and continental climates and in the whole Global 262 

dataset, respectively. These models provided evidence that only UV light, forest environments, 263 

soil C and pH are consistent predictors of bacterial diversity across three major biomes: arid, 264 

continental and temperate climates (Fig. 1b). These environmental variables were also important 265 

predictors of bacterial diversity across biomes (Fig. 1b). The relative importance of universal 266 

predictors of bacterial diversity shifted across biomes (Fig. 1b). Thus, soil C, soil pH and UV light 267 

were the most important universal predictors of bacterial diversity for temperate, continental and 268 

arid biomes, respectively (Fig. 1b).  269 

Soil bacterial alpha diversity was lower in forests than grasslands (Figs. 2 and 3). Overall, 270 

UV light had a hump-shaped (or mostly negative) relationship with bacterial richness (Figs. 2 and 271 

3). Bacterial diversity showed a positive or hump-shaped relationship with soil pH, and in general, 272 

was negatively related to soil C (Fig. 2). In arid ecosystems, soil C followed a hump-shaped 273 

relationship with bacterial diversity (<2%; Fig. 2G). In general, similar patterns (but see soil C) 274 

were observed when all biomes were analyzed together in the Global dataset (n = 237; Fig. 3), 275 



which also included samples from polar and tropical biomes. Model selection is available in Table 276 

S1. 277 

The Aridity Index was the most important climatic predictor in arid ecosystems, showing 278 

a positive relationship with bacterial alpha diversity (Fig. S3). Precipitation seasonality, which 279 

exhibited a hump-shaped relationship with bacterial diversity, was the most important climatic 280 

predictor in temperate ecosystems (Fig. S3). Finally, maximum temperature was the most 281 

important climatic predictor for continental climates, and showed a positive relationship with 282 

bacterial alpha diversity (Fig. S3). 283 

Using only the four widespread predictors (UV light, soil C, soil pH and vegetation type; 284 

Fig. 4), our SEM was able to explain more than half (51%) of the variation in the distribution of 285 

bacterial diversity across the globe. Our a priori models attained an acceptable/good fit by all 286 

criteria in all cases, and thus no post hoc changes were made. Soil C had a direct negative effect 287 

on bacterial diversity (Fig. 4). Soil pH had a hump-shaped effect on alpha diversity (plotted in Fig. 288 

3). Forest environments showed a direct negative effect on alpha diversity (Fig. 4). UV light had 289 

a direct negative (hump-shaped) effect on bacterial diversity (plotted in Fig. 3). Forest 290 

environments showed indirect negative effects on alpha diversity via reducing soil pH and 291 

increasing soil C (Fig. 4). 292 

Finally, using environmental information, we generated a global map showing the 293 

distribution of soil bacterial alpha diversity (Fig. 5). Confirming our previous results, the cubist 294 

algorithm selected soil pH and C, UV light and vegetation type as important predictors for bacterial 295 

diversity. This model also selected Aridity Index, maximum temperature, diurnal temperature 296 

range, NPP and soil texture as important predictors. Our global map indicate that diversity of 297 

bacteria peak at global regions typically dominated by high pH, low C, grasslands and intermediate 298 

levels of radiation (Fig. 5; Fig. 6). Predicted and observed values for alpha diversity in this study 299 

were positively and significantly correlated (Fig. 5; Pearson´s r = 0.51; P < 0.001). Similarly, 300 

predicted and observed values for alpha diversity were positively and significantly correlated 301 

(Pearson´s r = 0.47; P < 0.001) using independent data from Thompson et al. (2017).  302 

 303 

Discussion  304 

Our work suggests that, from the wide range of selected environmental predictors included here, 305 

only UV light, forest environments, soil C and pH can be considered as significant universal 306 



predictors of soil bacterial diversity valid within and across a wide range of biomes differing 307 

markedly in vegetation, climate and soil types. Our findings indicate that bacterial diversity is 308 

consistently lower in forests than grasslands, with low pH and relatively high carbon contents 309 

(>5%) across arid, temperate and continental biomes (Fig. 2 and 5). Soil pH is known to be one of 310 

the major environmental drivers of bacterial diversity at the global scale (Fierer and Jackson 2006), 311 

and therefore was expected to be a significant global driver of bacterial diversity across and within 312 

global biomes. Nonetheless, the importance of pH as a major predictor of diversity has been 313 

recently questioned (Maestre et al. 2015; Hendershot et al. 2017). Our study supports previous 314 

findings of an overall positive (or hump-shaped) relationship between soil pH and bacterial alpha 315 

diversity (Lauber et al. 2009), and provides strong support for the notion that soil pH is an 316 

important predictor of bacterial diversity worldwide. More importantly, our analyses provide 317 

strong evidence that UV light, soil C content and broad vegetation type (forest cf. grassland) should 318 

also be considered as universal predictors of the bacterial alpha diversity globally across major 319 

biomes. Together, the identified four universal predictors could predict more than half of the 320 

variation in the global distribution of bacterial diversity in our Random Forest and Structural 321 

Equation Models. Using environmental information, we generated a global map predicting the 322 

distribution of bacterial alpha diversity. Such a map reflects the results from the Random Forest 323 

and SEM models, using an independent Cubist model, and ultimately provides a novel atlas of the 324 

alpha diversity found in terrestrial ecosystems. 325 

 Ultraviolet light had an outstanding capacity to predict the distribution of bacterial diversity 326 

within and across biomes worldwide. Such a strong relationship between UV light and bacterial 327 

diversity had not been described previously for natural terrestrial ecosystems worldwide. In 328 

general (two out of three biomes, and when analyzing all data together), we found an overall hump-329 

shaped relationship between UV light and diversity of bacteria. In other words, the diversity of 330 

bacteria peak at intermediate levels of UV light. High levels of UV light are known to reduce the 331 

abundance of bacteria of multiple species (Santos et al. 2012), supporting our results. More 332 

interestingly, an increase in UV light from very low to intermediate levels of intensity positively 333 

related to diversity of bacteria. Such a result is in agreement with the classic intermediate 334 

disturbance hypothesis (IDH; Wilkinson 1999), which suggest that species richness is maximized 335 

when ecological disturbance is neither too high nor too low. The IDH hypothesis suggest that 336 

intermediate levels of environmental disturbance support the coexistence of species capable of 337 



surviving both low and high levels of disturbance, ultimately supporting the highest level of 338 

biodiversity. Our results provide novel evidence that UV light should be considered as a universal 339 

predictor for bacterial diversity. Another example of this relationships is the hump-shaped 340 

observed correlation between soil pH and bacterial diversity. A larger number of bacterial species 341 

can co-exist at intermediate neutral levels of pH.  342 

Soil C content was negatively related to bacterial diversity within three major biomes and 343 

across all biomes. A strong negative correlation between soil C and bacterial diversity has been 344 

shown recently in temperate ecosystems from Scotland (Delgado-Baquerizo et al. 2017). Such a 345 

negative correlation might be explained by the strong competition to exclusion effect of microbial 346 

biomass on alpha diversity in locations with high levels of organic matter (Waldrop et al. 2006). 347 

Locations with higher soil C concentrations often support a greater abundance of soil bacteria and 348 

fungi, as supported by distributional maps of soil C stocks (Wieder et al. 2015) and microbial 349 

biomass (Fierer 2017). The only exception to this negative relationship occurs in arid zone soils 350 

with very low C contents (<2%). In arid, low carbon soils, bacterial diversity is positively 351 

correlated with soil C. Specifically, we found a hump-shaped relationship between soil C and 352 

bacterial diversity in arid environments, supporting the notion that soil C content limits the alpha 353 

diversity of bacterial communities in extremely low soil C environments (Fig. 2). This result has 354 

previously been reported in terrestrial ecosystems with very low C contents (e.g., arid and semiarid 355 

environments; Maestre et al. 2015; Neilson et al. 2017), or environments that included soil samples 356 

with extremely low level of soil C content (e.g. Antarctica; Delgado-Baquerizo et al. 2016a; 357 

2018b).  358 

Compared with grasslands, forest ecosystems have reduced levels of bacterial diversity 359 

across biomes (arid, continental and temperate ecosystems), and globally. Thus, ecosystem type 360 

(forest vs. grasslands) should also be considered as a global predictor of bacterial alpha diversity. 361 

This result accords with results from Crowther et al. (2014), who found an overall negative effect 362 

of forest environments cf. grasslands in North America. The reported negative relationship 363 

between forest environments and bacterial alpha diversity might be related to the indirect negative 364 

effects of forest environments on bacterial diversity via increasing soil C and reduced soil pH (Fig. 365 

4), but also the strong competition of bacteria with plants and other soil organisms in rich and 366 

highly productive environments (Waldrop et al. 2006; Eldridge et al. 2017). Supporting this notion, 367 

Terrat et al. (2017; France) and Delgado-Baquerizo et al. (2018b; Australia) found that croplands 368 



and grasslands had greater diversity of bacteria than forests. Our results suggest that grasslands, 369 

which are known to be a global hotspot of biodiversity (Roux et al. 2012), also have a higher level 370 

of alpha diversity than other terrestrial ecosystems, suggesting that our results are consistent with 371 

our understanding of how land use change (e.g. land clearing for farming) might affect microbial 372 

diversity. Conversion of forest to pasture is increasing markedly to meet global food demand, and 373 

is forecast to increase by 110% by 2050 (Tilman et al. 2011). Our study suggests that conversion 374 

of forest to grasslands will be accompanied by increases in bacterial alpha diversity. The 375 

importance of land use conversion as a major driver of bacterial alpha diversity has recently been 376 

highlighted by Szoboszlay et al. (2017) for terrestrial ecosystems across Europe, suggesting a 377 

positive effect of forest to pasture and cropland conversion on bacterial alpha diversity. Similarly, 378 

a previous study found an increase in the alpha diversity of particular groups of bacteria (e.g., 379 

Verrucomicrobia) following conversion from forest to pasture in Amazon (Ranjan et al. 2015).  380 

No single climatic variable could predict the distribution of bacterial diversity across 381 

biomes. Our results suggest that climatic drivers of bacterial diversity cannot be considered 382 

globally applicable predictors of bacterial diversity, but that specific influences are limited to 383 

particular biomes. For example, we found that the Aridity Index, soil temperature and precipitation 384 

seasonality were the major climatic predictors of bacterial alpha diversity in arid, continental and 385 

temperate ecosystems, respectively (Fig. S3). These results accord with the results of studies by 386 

Maestre et al. (2015) and Zhou et al. (2016), who found that the Aridity Index and temperature 387 

were major predictors of bacterial alpha diversity in global drylands, and cold forest environments 388 

from North America, respectively. However, our results suggest that only precipitation seasonality 389 

and temperature were important climatic predictors of bacterial diversity in temperate and 390 

continental ecosystems, respectively. The importance of seasonality as a predictor of bacterial 391 

diversity was demonstrated by Delgado-Baquerizo et al. (2016b) using a meta-analysis approach.  392 

Together, our results suggest that only a few environmental predictors including ecosystem 393 

type, UV light and soil C and pH, can be considered globally-applicable predictors of bacterial 394 

alpha diversity within and across biomes worldwide. This information can potentially be used to 395 

manage these soil organisms and the processes that they regulate in terrestrial ecosystems across 396 

large areas of the globe. Moreover, this environmental information can be used to predict the 397 

distribution of bacterial alpha diversity worldwide, which allowed us to generate a global atlas of 398 

bacterial diversity. Future studies could use our mapping approach to model the responses of soil 399 



biodiversity under predicted global chance scenarios (e.g., warming and changes in precipitation 400 

regimes) at the global scale. Our results provide a holistic view of the direct and indirect effects of 401 

universal predictors on bacterial alpha diversity. This is likely to be an important and useful tool 402 

to help us understand potential changes in ecosystem functioning and the provision of essential 403 

services under global change scenarios.  404 
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 521 

Figure 1. Location for the 237 sites globally distributed across arid, continental and temperate 522 

climates (red circles) and others (grey circles) (a). Results from a Random Forest aiming to identify 523 

the main significant (P < 0.05) environmental predictors of bacterial alpha diversity (b).  MSE = 524 

Mean Square Error.  525 
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 532 

Figure 2. Relationship between universal environmental predictors and alpha diversity of bacterial 533 

communities across three globally distributes biomes.  534 
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Figure 3. Relationship between universal predictors and bacterial alpha diversity across the globe. 540 
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 555 

Figure 4. Structural equation model describing the selected direct and indirect effects of the 556 

universal predictors on bacterial alpha diversity. Numbers adjacent to arrows are indicative of the 557 

effect size of the relationship. R2 denotes the proportion of variance explained. Significance levels 558 

of each predictor are *P<0.05, **P<0.01. F = forests, G = grasslands. There was a non-significant 559 

deviation of the data from the model (χ2 = 0.22, df = 1; P=0.63; RMSEA P = 0.73; Bootstrap P = 560 

0.68). Other significant effects, not included in this graph for simplicity (e.g., those from location), 561 

are included in Table S2. The numbers (1) and (2) superimposed on the arrows in our model 562 

indicate the coefficients coming from the two component of a quadratic regression. F = forest; G 563 

= Grasslands.  564 
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 574 

Figure 5. Predicted global distribution of bacterial alpha diversity across the globe.  575 
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 592 

Figure 6. Mean (± SE) bacterial richness across major ecosystem types (n = 237). Ecosystem type 593 

classification followed the Köppen climate classification and the major vegetation types found in 594 

our database. Grasslands include both tropical and temperate grasslands. Shrublands include polar, 595 

temperate and tropical shrublands. Letters indicate post-hoc analyses from PERMANOVA.  596 
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