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Abstract

Many soil bacteria and fungi remain unclassifiethat highest taxonomic ranks (e.g., phyla levebiclw
hampers our ability to assess the ecology and ifumadtcapabilities of these soil organisms in tetnial
ecosystems globally. The first logical step towdel classification of these unknown soil taxa iglentify
potential locations on Earth where these uncla&ssifiacteria and fungi are feasibly most prevalemido
this, here | used data from a global soil survepss 235 locations, including amplicon sequenairfgri
mation for fungal and bacterial communities, andegated global atlases highlighting those soilsrethe
the percentages of taxa of bacteria and fungi aithunknown phyla are expected to be more prevalent.
Results indicate that soil samples with the largestentage of fungi with an unknown phyla cancené

in dry forests and grasslands, while those withldingest percentage of bacteria with an unknowraphy
are found in boreal and tropical forests. This infation can be used by taxonomists and microbistsgi
to target these potentially new soil taxa.
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Text

Soil microbial communities play an essential roleriaintaining important soil processes such asemitr
cycling, waste decomposition, climate regulatiamd gollution degradatiofBardgett and van der Putten
2014; Delgado-Baquerizo et al. 2016). Today, secjungriechnologies are well established and broadly
used (Caporaso et al. 2010). As such, producimg lamounts of data on the composition and diveosity
bacterial and fungal communities is no longer sallehging. Moreover, the major ecological drivefs o
the variation in these microbial communities aredmeing increasingly visibi@edersoo et al. 2014; Fierer
2017). The spotlight is now on the soil taxonomistthough progress has been made in the pastéansy
(Marx 2017; York 2018), culturing, isolating, andssifying soil microbes is still a difficult taskor most
soil bacterial and fungal species, we know vetlelébout their identity or the tasks performedrebg the
most dominant microbial taxa (Delgado-Baquerizale2018). More concerning, in some cases, we lack
the most basic taxonomic information to classifgsd bacterial and fungal taxa as they do not nhteh
latest data within taxonomic databases (e.g., @e®s and UNITE) even at the highest taxonomicsrank
(e.g., phyla level).

The first logical step toward the classificationtioése unknown microbial taxa is to identify poi@inb-
cations where they could be found across the gibhis.information can then be used by taxonomists a
microbiologists to target these new soil taxa. Hewsed data from a global soil sun®glgado-Baquerizo
et al. 2018) across 235 locations (Fig. S1), antiding amplicon sequencing information on funda§(
gene)and bacterial (16S rRNA genedmmunities from around the world, to highlight skdocations on
Earth where taxa of bacteria and fungi with an wwkm phyla are feasibly most prevalent. The datalrase
Delgado-Baquerizo et al. (2018) has been usedquslyi to identify the dominant taxa of bacterialgliby,
and more recently, the major ecological predictdrisacterial diversity (Delgado-Baquerizo and Elde
2019). | used the bioinformatics pipeline descrilmeDelgado-Baquerizo et al. (2018), and two ofriest
commonly used microbial databases for taxonomigtifieation (Greengenes and UNITE), to estimate, at
the global scale, the percentage of phylotypesaofdsia and fungi with an unknown phyla in soilsoas
the globe. These taxa are classified as fungi oreba using taxonomic databases, but do not reaigh
known phyla. As such, they are expected to be tiaterew phyla of fungi or bacteria.

As expected, the taxonomic information at the sget@vel could not be found for 99% of bacterial an
63% of fungal phylotypes (clustered at 97% simfijariNotably, up to 1.36% and 9.37% of the retrgbve
phylotypes classified as bacteria or fungi remaineclassified at the phyla level in soils acrossdlobe.
For these microbes, we do not know the phylum techvithey belong. In other words, for some soils,
almost 10% of taxa within bacteria and fungi ataltp unknown to us. These taxa represent betwegl O
1.86% (average of 0.12%) of all 16sRNA sequenaas,between 0.00-22.11% (average of 3.98%) of all
ITS retrieved sequences. On average, soil sampthstive largest percentage of phylotypes of baateri
with an unknown phyla can be found in boreal angital forests (Fig. 1), while those with the lase
percentage of phylotypes of fungi with an unknovagla are found in dry forests and grasslands (Bjig.

| then generated a global atlas highlighting thgledal soils where bacteria and fungi with an unano
phyla are expected to be more prevalent. Buildivesé global maps is possible for three main reasons
firstly, the percentages of phylotypes of bactarid fungi with an unknown phyla are highly corretht
with key environmental factors at the global sqdlable 1). This result suggests that environmestditd
can be used to predict the distribution of phyletypf fungi and bacteria unclassified at the pleial.
Secondly, the database used here covers a widiegtrad environmental conditions and soil propertie
found on Earth, being highly representative forbglty distributed terrestrial ecosystems. For examp
mean annual precipitation and temperature in thesgions ranged from 67 to 3085mm and -11.4° to
26.5°C, respectively. Moreover, soil pH ranged frdi®d to 9.21; soil C from 0.15 to 34.77%; andefin
texture fraction (% clay+silt) from 1.40 to 92.00%nally, high resolution maps for key environménta
factors predicting the percentage of unclassif@e@ t(Table 1) are available at the global scalerdfore,
globally available information on environmentalttars can potentially be used to predict global hots
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for phylotypes of bacteria and fungi with an unkmophyla. These three important points allowed me to
generate global atlases for the potential distidioubf percentages of phylotypes of bacteria amgjifwith

an unknown phyla (Fig. 2). These global atlaseswerss-validated as explained in Appendix 1 (Seyppl
mentary Materials).

The global maps included in this study indicategbtential distribution of unclassified taxa withiacteria
and fungi. Interestingly, locations where bactevith an unknown phyla are more prevalent are distin
from those of fungi. This global atlas suggests #uils from Brazil, Chile, Russia, Indonesia, &,
Northern Europe, and the coastlines of North Angeciontain a relatively high percentage of bacteiia
an unknown phyla. On the other hand, deserts frern,”China, Australia, South Africa, the Middle Eas
the Saharan region, and the western coast of Margrica contain a relatively high percentage oflasic
sified taxa within fungi. Soil taxonomists and naibiologists should target soils from these envirents
and global locations to increase our chances d¢ditiag and classifying these elusive yet significaoil
taxa, and thus, increase our knowledge of who #éneyand what they are doing in our soils.

M ethods
Soil sampling

Soils were collected from 235 locations across teigi countries and six continents. Soil samplgs (to
~7.5cm depth) were collected under the most comragatation across a wide range of ecosystem (&rest
grasslands, and shrublands) and climatic (aridpégate, tropical, continental, and polar ecosysteypes.
The locations sampled represent wide gradientswur@amental factors, which is critical for mapping
predictions. Detailed information about this sureay be found in Delgado-Baquerizo et al. (2018).

Molecular analyses

Soil DNA was extracted using the Powersoil® DNAl#&imon Kit (MoBio Laboratories, Carlsbad, CA,
USA) according to the manufacturer’'s instructioAsaplicons targeting the bacterial 16S rRNA gene
(341F-805R; Herlemann et al. 2011) and the fungal fegion (FITS7-ITS4R; lhrmark et al. 2012) were
sequenced at Western Sydney University's NGS fa¢llydney, Australia) using the lllumina MiSeqtpla
form. Bioinformatic processing was performed usamgombination of QIIMECaporaso et al. 2010),
USEARCH (Edgar 2010) and UPAR$Edgar 2013). Operational taxonomic units —OTUdwylgypes
hereafter), were identified at th87% identity level. Taxonomy for bacteria and fungis assigned using
the Greengenes and UNITE databases, respectivély. abundance tables were constructed from these
analyses. 16s rRNA reads classified as Archaearagilhsts or mitochondria were removed. The pefcent
age of phylotypes of bacteria and fungi with annown phyla for each sample were calculated froraghe
OTU tables. These phylotypes are classified asifongacteria, but do not match data within taxoiom
databases at the phyla level (unclassified bacsriafungi hereafter). Given that soil and DNA sksp
were collected, extracted, and analysed followimgydame standardised protocol and within the same |
boratory, any biases (e.g., sequencing error) wbeldonsistent across analyses.

Environmental factors

For each location, information for twelve enviromta factors was obtained: climate (maximum and-min
imum temperatures, precipitation seasonality; méiamal temperature range and Aridity Index); soil
properties (pH, texture and total organic carbdo)ninant ecosystem type (forest and grasslandm)t pl
productivity, and UV light intensity. Informatiomasoil pH, texture and total organic carbon (sQil@s
obtained using standard laboratory methods (Andei®93; Kettler et al. 2001) in the laboratoriesir
the Universidad Rey Juan Carlos (Spain). Climatierimation (1km resolution) for all sampling locats
was obtained from the Worldclim database (www.wdiid.org; Hijmans et al. 2005; Zomer et al. 2018).
The dominant ecosystem types (forest and grasglarete determined in the field. Plant producti\ihet
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primary productivity) data was obtained using th@iNalized Difference Vegetation Index (NDVI) from
the Moderate Resolution Imaging Spectroradiomet@lODIS) aboard NASA's Terra satellites
(http://neo.sci.gsfc.nasa.gdvThe monthly average value for this variable wakulated between 2003-
2015 (~10km resolution), when all soil samplinggaveonducted. Information on the annual ultraviolet
index (UV index) was obtained from the NASA's Asedellite (https://neo.sci.gsfc.nasa.gov).

Mapping the global distribution of unclassified soil taxa

The prediction-oriented regression model Cubistii@n 1993) was used to predict the percentagéwf p
lotypes of bacteria and fungi with an unknown phataoss the globe. Mapping analyses were inde-
pendently done to find the percentage of unclasbifaxa within bacteria and fungi. The Cubist atan
uses a regression tree analysis to generate d kigrarchical rules using information on enviromtz
covariates, based on real data (235 locations);wdmie later used for spatial prediction (Kuhnl.e2@16).
Covariates in our models include the above destritvelve environmental factors as well as spade (la
tude and longitude). Global predictions on theritiation of the percentage of unclassified taxahimit
bacteria and fungi were done on a 25km resolutitmh ghich resulted in a grid including 225530 Itoas.
Environmental information for each of these loacasgiancluding soil properties, climatic informatjgoiant
production, ecosystem types and UV light, was oletdifrom global databases available online. Global
information on soil properties for this grid wagahed using the ISRIC (global gridded soil infotiog)

Soil Grids (https://soilgrids.org/#!/?layer=geonddenwrb_250m). Global information on the major veg
etation types in this study (grasslands and foreghs obtained using the Globcover2009 map from the
European Space Agency (http://due.esrin.esa.irg¢/gggbcover.php). Global information on climate, UV
radiation and net primary productivity were obtairieom the WorldClim database (www.worldclim.org)
and NASA satellites (https://neo.sci.gsfc.nasa.gas)explained above. The R package Cubist wastosed
conduct these analys@g@uhn et al. 2016).

References

Anderson JM (1993) JSI, Ingramm, Tropical Soil B} and Fertility: A Handbook of Methods (CABI,
Wallingford, UK, ed. 2).

Bardgett RD, van der Putten WH (2014) Belowgrouindliversity and ecosystem functioning. Nature
515, 505-511.

Caporaso JG, Kuczynski J, Stombaugh J, BittingeBlshman FD, Costello EK, et al. (2010) QIIME
allows analysis of high-throughput community seaireg data. Nat Method 7, 335.

Delgado-Baquerizo M, Maestre FT, Reich PB, Jefffi€s Gaitan JJ, Encinar D. et al. (2016) Microbial
diversity drives multifunctionality in terrestriabosystems. Nat Commun 28, 10541.

Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benaw&onzalez A, Eldridge DJ, Bardgett RD et al.
(2018) A global atlas of the dominant bacteria fibimsoil. Science 19, 320-325.

Delgado-Baquerizo, M. & Eldridge, D.J. Ecosyste@®&10).https://doi.org/10.1007/s10021-018-0333-2

Edgar R.C. (2010) Search and clustering ordersagfnitude faster than BLAST Bioinformatics 26,
2460.

Edgar R.G. (2013) UPARSE: highly accurate OTU sages from microbial amplicon reads Nature
Methods 10, 996-998.

Fierer, N (2017) Embracing the unknown: disentarigthe complexities of the soil microbiome. Nature
Reviews Microbiology 15, 579-590.

Greengenes. http://greengenes.secondgenome.com

Herlemann, D.P., Labrenz M, Jurgens K, BertilssoWaniek JJ, Andersson AF (2011) Transitions in
bacterial communities along the 2000 km salinigdient of the Baltic Sea. ISME Journal 5,
1571-1579.




207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Ihrmark, K., Bodeker IT, Cruz-Martinez K, Friberg Kubartova A, Schenck J et al. (2012) New primers
to amplify the fungal ITS2 region-evaluation by 4&uencing of artificial and natural commu-
nities. FEMS Microbiol Ecol. 82, 666—677.

J.R. Quinlan, C4.5: Programs for Machine Learnigrgan Kaufmann Publishers, San Mateo, Califor-
nia, 1993).

Kettler TA, Doran JW, Gilbert TL (2001) Simplifiedethod for soil particle-size determination to ac-
company soil-quality analyses. Soil Sci Soc Am J&B.

M. Kuhn, S. Weston, C. Keefer, N. Coulter (2016){Sti Rule- And Instance-Based Regression Mode-
ling. R package version 0.0.19.

Marx V (2017) Microbiology: the return of culturdature Methods 14, 37-40

R.J. Hijmans, Cameron SE, Parra JL, Jones PG sJarf2005) Very high resolution interpolated climat
surfaces for global land areas Int J Climatol Z55:1978.

Tedersoo L, Bahram M, Pdlme S, Kéljalg U, Yorou NBjesundera R et al. (2014) Fungal bio-
geography. Global diversity and geography of saili. Science 346, 1256688.

UNITE. https://unite.ut.ee

York A. Nature Reviews Microbiology 16, 583 (2018).

Zomer RJ, Trabucco A, Bossio DA, Verchot LV (20@i)mate change mitigation: A spatial analysis of
global land suitability for clean development metken afforestation and reforestation. Agric
Ecosyst Envir 126, 67-80.

Acknowledgements

This project has received funding from the Europdaion’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant ages¢ No 702057. | would like to thank Melissa S.
Martin, David J. Eldridge and Fernando T. Maestraleir comments and suggestions, which have Helpe
to improve this piece. | would also like to thankagsh K. Singh, Noah Fierer, Richard Bardgett efib
Benavent-Gonzalez, David J. Eldridge and FernandaEstre for their original contribution to thetaa
bases included in this study.

Competing financial interests.
The authors declare no conflict of interest.

Data accessibility
The data used in this article will be made publakgilable in a public repository (Figshare) upablica-
tion.



256  Figure Captions

257
Bacteria Fungi
PERMANOVA P < 0.001 PERMANOVA P < 0.001
Boreal —F— . —F
Cold Forest G =
Temperate forest | |~ 1 R
Dry forests i ] o
Tropical forest e 1 =
Cold grasslands
Temp. and trop. grasslands
Dry grasslands
Shrublands
00 03 05 08 1.0 0.0 1.0 2.0 3.0 4.0 5.0
% unclassified phylotypes
258
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Figure 2. Global atlas including the potential distributioi®6 of phylotypes of bacteria and fungi with an
unknown phyla (unclassified bacteria and fungi)goben their natural co-occurrence with climatiddigy
index, maximum and minimum temperature, precitaieasonality and mean diurnal temperature range),
primary productivity, dominant ecosystem type (&rand grasslands), soil properties (total orgaare
bon, pH and texture) and UV light in 235 locatioBee Fig. S1 for the locations of the 235 in thislg.

See Appendix S1 for a cross-validation of thesesnap
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Table 1. Correlation (Spearman) between the % phylotypdsaoferia and fungi with an unknown phyla

293 (unclassified bacteria and fungi) with climate dési index, maximum and minimum temperature, precip-
294 itation seasonality and mean diurnal temperatungap primary productivity, dominant ecosystem type
295 (forest and grasslands), soil properties (totahoigycarbon, pH and texture) and UV light in 23&altions
296 (P <0.05). MAXT = maximum temperature. MINT = minimuemperature. Aridity Index = precipitation
297 [/ potential Evapotranspiration. MDR = Mean diurteahperature range. NPP = Net primary productivity.
298
299
Aridity For- uv
_ Longitude Latitude Index MAXT | MINT PSEA MDR NPP ests Grasslands Texture Soil C pH light
U”lf;i‘fesr'if;fd -0.66 059 0.30 020 | 033 | 045 | -017 051 0.44 -0.15 -0.25
U”Cf'ﬁ;iiﬁed 0.27 -0.25 -0.66 056 | 030 039 | -051 -0.24 041 | 057 | 043
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