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Abstract 34 

Many soil bacteria and fungi remain unclassified at the highest taxonomic ranks (e.g., phyla level), which 35 
hampers our ability to assess the ecology and functional capabilities of these soil organisms in terrestrial 36 
ecosystems globally. The first logical step toward the classification of these unknown soil taxa is to identify 37 
potential locations on Earth where these unclassified bacteria and fungi are feasibly most prevalent. To do 38 
this, here I used data from a global soil survey across 235 locations, including amplicon sequencing infor-39 
mation for fungal and bacterial communities, and generated global atlases highlighting those soils where 40 
the percentages of taxa of bacteria and fungi with an unknown phyla are expected to be more prevalent. 41 
Results indicate that soil samples with the largest percentage of fungi with an unknown phyla can be found 42 
in dry forests and grasslands, while those with the largest percentage of bacteria with an unknown phyla 43 
are found in boreal and tropical forests. This information can be used by taxonomists and microbiologists 44 
to target these potentially new soil taxa. 45 
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Text 69 

Soil microbial communities play an essential role in maintaining important soil processes such as nutrient 70 
cycling, waste decomposition, climate regulation, and pollution degradation (Bardgett and van der Putten 71 
2014; Delgado-Baquerizo et al. 2016). Today, sequencing technologies are well established and broadly 72 
used (Caporaso et al. 2010). As such, producing large amounts of data on the composition and diversity of 73 
bacterial and fungal communities is no longer so challenging. Moreover, the major ecological drivers of 74 
the variation in these microbial communities are becoming increasingly visible (Tedersoo et al. 2014; Fierer 75 
2017). The spotlight is now on the soil taxonomists. Although progress has been made in the past few years 76 
(Marx 2017; York 2018), culturing, isolating, and classifying soil microbes is still a difficult task. For most 77 
soil bacterial and fungal species, we know very little about their identity or the tasks performed even by the 78 
most dominant microbial taxa (Delgado-Baquerizo et al. 2018). More concerning, in some cases, we lack 79 
the most basic taxonomic information to classify these bacterial and fungal taxa as they do not match the 80 
latest data within taxonomic databases (e.g., Greengenes and UNITE) even at the highest taxonomic ranks 81 
(e.g., phyla level).  82 

The first logical step toward the classification of these unknown microbial taxa is to identify potential lo-83 
cations where they could be found across the globe. This information can then be used by taxonomists and 84 
microbiologists to target these new soil taxa. Here, I used data from a global soil survey (Delgado-Baquerizo 85 
et al. 2018) across 235 locations (Fig. S1), and including amplicon sequencing information on fungal (ITS 86 
gene) and bacterial (16S rRNA gene) communities from around the world, to highlight those locations on 87 
Earth where taxa of bacteria and fungi with an unknown phyla are feasibly most prevalent. The database in 88 
Delgado-Baquerizo et al. (2018) has been used previously to identify the dominant taxa of bacteria globally, 89 
and more recently, the major ecological predictors of bacterial diversity (Delgado-Baquerizo and Eldridge 90 
2019). I used the bioinformatics pipeline described in Delgado-Baquerizo et al. (2018), and two of the most 91 
commonly used microbial databases for taxonomic identification (Greengenes and UNITE), to estimate, at 92 
the global scale, the percentage of phylotypes of bacteria and fungi with an unknown phyla in soils across 93 
the globe. These taxa are classified as fungi or bacteria using taxonomic databases, but do not match any 94 
known phyla. As such, they are expected to be potential new phyla of fungi or bacteria. 95 

As expected, the taxonomic information at the species level could not be found for 99% of bacterial and 96 
63% of fungal phylotypes (clustered at 97% similarity). Notably, up to 1.36% and 9.37% of the retrieved 97 
phylotypes classified as bacteria or fungi remained unclassified at the phyla level in soils across the globe. 98 
For these microbes, we do not know the phylum to which they belong. In other words, for some soils, 99 
almost 10% of taxa within bacteria and fungi are totally unknown to us. These taxa represent between 0.01-100 
1.86% (average of 0.12%) of all 16sRNA sequences, and between 0.00-22.11% (average of 3.98%) of all 101 
ITS retrieved sequences. On average, soil samples with the largest percentage of phylotypes of bacteria 102 
with an unknown phyla can be found in boreal and tropical forests (Fig. 1), while those with the largest 103 
percentage of phylotypes of fungi with an unknown phyla are found in dry forests and grasslands (Fig. 1).  104 

I then generated a global atlas highlighting those global soils where bacteria and fungi with an unknown 105 
phyla are expected to be more prevalent. Building these global maps is possible for three main reasons; 106 
firstly, the percentages of phylotypes of bacteria and fungi with an unknown phyla are highly correlated 107 
with key environmental factors at the global scale (Table 1). This result suggests that environmental data 108 
can be used to predict the distribution of phylotypes of fungi and bacteria unclassified at the phyla level. 109 
Secondly, the database used here covers a wide gradient of environmental conditions and soil properties 110 
found on Earth, being highly representative for globally distributed terrestrial ecosystems. For example, 111 
mean annual precipitation and temperature in these locations ranged from 67 to 3085mm and -11.4º to 112 
26.5ºC, respectively. Moreover, soil pH ranged from 4.04 to 9.21; soil C from 0.15 to 34.77%; and, fine 113 
texture fraction (% clay+silt) from 1.40 to 92.00%. Finally, high resolution maps for key environmental 114 
factors predicting the percentage of unclassified taxa (Table 1) are available at the global scale. Therefore, 115 
globally available information on environmental factors can potentially be used to predict global hotspots 116 



 

 

for phylotypes of bacteria and fungi with an unknown phyla. These three important points allowed me to 117 
generate global atlases for the potential distribution of percentages of phylotypes of bacteria and fungi with 118 
an unknown phyla (Fig. 2). These global atlases were cross-validated as explained in Appendix 1 (Supple-119 
mentary Materials).  120 

The global maps included in this study indicate the potential distribution of unclassified taxa within bacteria 121 
and fungi. Interestingly, locations where bacteria with an unknown phyla are more prevalent are distinct 122 
from those of fungi. This global atlas suggests that soils from Brazil, Chile, Russia, Indonesia, Iceland, 123 
Northern Europe, and the coastlines of North America contain a relatively high percentage of bacteria with 124 
an unknown phyla. On the other hand, deserts from Peru, China, Australia, South Africa, the Middle East, 125 
the Saharan region, and the western coast of North America contain a relatively high percentage of unclas-126 
sified taxa within fungi. Soil taxonomists and microbiologists should target soils from these environments 127 
and global locations to increase our chances of isolating and classifying these elusive yet significant soil 128 
taxa, and thus, increase our knowledge of who they are and what they are doing in our soils.  129 

Methods  130 

Soil sampling  131 

Soils were collected from 235 locations across eighteen countries and six continents. Soil samples (top 132 
~7.5cm depth) were collected under the most common vegetation across a wide range of ecosystem (forests, 133 
grasslands, and shrublands) and climatic (arid, temperate, tropical, continental, and polar ecosystems) types. 134 
The locations sampled represent wide gradients in environmental factors, which is critical for mapping 135 
predictions. Detailed information about this survey can be found in Delgado-Baquerizo et al. (2018).  136 

Molecular analyses 137 

Soil DNA was extracted using the Powersoil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, 138 
USA) according to the manufacturer’s instructions. Amplicons targeting the bacterial 16S rRNA gene 139 
(341F-805R; Herlemann et al. 2011) and the fungal ITS region (FITS7-ITS4R; Ihrmark et al. 2012) were 140 
sequenced at Western Sydney University’s NGS facility (Sydney, Australia) using the Illumina MiSeq plat-141 
form. Bioinformatic processing was performed using a combination of QIIME (Caporaso et al. 2010), 142 
USEARCH (Edgar 2010) and UPARSE (Edgar 2013). Operational taxonomic units –OTUs– (phylotypes 143 
hereafter), were identified at the ≥97% identity level. Taxonomy for bacteria and fungi was assigned using 144 
the Greengenes and UNITE databases, respectively. OTU abundance tables were constructed from these 145 
analyses. 16s rRNA reads classified as Archaea, chloroplasts or mitochondria were removed. The percent-146 
age of phylotypes of bacteria and fungi with an unknown phyla for each sample were calculated from these 147 
OTU tables. These phylotypes are classified as fungi or bacteria, but do not match data within taxonomic 148 
databases at the phyla level (unclassified bacteria and fungi hereafter). Given that soil and DNA samples 149 
were collected, extracted, and analysed following the same standardised protocol and within the same la-150 
boratory, any biases (e.g., sequencing error) would be consistent across analyses.  151 

Environmental factors  152 

For each location, information for twelve environmental factors was obtained: climate (maximum and min-153 
imum temperatures, precipitation seasonality; mean diurnal temperature range and Aridity Index); soil 154 
properties (pH, texture and total organic carbon); dominant ecosystem type (forest and grasslands); plant 155 
productivity, and UV light intensity. Information on soil pH, texture and total organic carbon (soil C) was 156 
obtained using standard laboratory methods (Anderson 1993; Kettler et al. 2001) in the laboratories from 157 
the Universidad Rey Juan Carlos (Spain). Climatic information (1km resolution) for all sampling locations 158 
was obtained from the Worldclim database (www.worldclim.org; Hijmans et al. 2005; Zomer et al. 2018). 159 
The dominant ecosystem types (forest and grasslands) were determined in the field. Plant productivity (net 160 



 

 

primary productivity) data was obtained using the Normalized Difference Vegetation Index (NDVI) from 161 
the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra satellites 162 
(http://neo.sci.gsfc.nasa.gov/). The monthly average value for this variable was calculated between 2003-163 
2015 (~10km resolution), when all soil samplings were conducted. Information on the annual ultraviolet 164 
index (UV index) was obtained from the NASA's Aura satellite (https://neo.sci.gsfc.nasa.gov). 165 

Mapping the global distribution of unclassified soil taxa  166 

The prediction-oriented regression model Cubist (Quinlan 1993) was used to predict the percentage of phy-167 
lotypes of bacteria and fungi with an unknown phyla across the globe. Mapping analyses were inde-168 
pendently done to find the percentage of unclassified taxa within bacteria and fungi. The Cubist algorithm 169 
uses a regression tree analysis to generate a set of hierarchical rules using information on environmental 170 
covariates, based on real data (235 locations), which are later used for spatial prediction (Kuhn et al. 2016). 171 
Covariates in our models include the above described twelve environmental factors as well as space (lati-172 
tude and longitude). Global predictions on the distribution of the percentage of unclassified taxa within 173 
bacteria and fungi were done on a 25km resolution grid, which resulted in a grid including 225530 locations. 174 
Environmental information for each of these locations, including soil properties, climatic information, plant 175 
production, ecosystem types and UV light, was obtained from global databases available online. Global 176 
information on soil properties for this grid was obtained using the ISRIC (global gridded soil information) 177 
Soil Grids (https://soilgrids.org/#!/?layer=geonode:taxnwrb_250m). Global information on the major veg-178 
etation types in this study (grasslands and forests) was obtained using the Globcover2009 map from the 179 
European Space Agency (http://due.esrin.esa.int/page_globcover.php). Global information on climate, UV 180 
radiation and net primary productivity were obtained from the WorldClim database (www.worldclim.org) 181 
and NASA satellites (https://neo.sci.gsfc.nasa.gov), as explained above. The R package Cubist was used to 182 
conduct these analyses (Kuhn et al. 2016). 183 
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Figure Captions  256 
 257 

 258 
Figure 1. Mean values (±SE) for % phylotypes of bacteria and fungi with an unknown phyla across major 259 
terrestrial biomes in 235 locations.  260 
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 278 

Figure 2. Global atlas including the potential distribution of % of phylotypes of bacteria and fungi with an 279 
unknown phyla (unclassified bacteria and fungi) based on their natural co-occurrence with climatic (aridity 280 
index, maximum and minimum temperature, precipitation seasonality and mean diurnal temperature range), 281 
primary productivity, dominant ecosystem type (forest and grasslands), soil properties (total organic car-282 
bon, pH and texture) and UV light in 235 locations. See Fig. S1 for the locations of the 235 in this study. 283 
See Appendix S1 for a cross-validation of these maps.  284 
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Table 1. Correlation (Spearman) between the % phylotypes of bacteria and fungi with an unknown phyla 292 
(unclassified bacteria and fungi) with climate (aridity index, maximum and minimum temperature, precip-293 
itation seasonality and mean diurnal temperature range), primary productivity, dominant ecosystem type 294 
(forest and grasslands), soil properties (total organic carbon, pH and texture) and UV light in 235 locations 295 
(P < 0.05). MAXT = maximum temperature. MINT = minimum temperature. Aridity Index = precipitation 296 
/ potential Evapotranspiration. MDR = Mean diurnal temperature range. NPP = Net primary productivity.  297 
 298 
 299 

 300 

 301 

 302 

  Longitude Latitude 
Aridity 
Index MAXT MINT PSEA MDR NPP 

For-
ests Grasslands Texture Soil C pH 

UV 
light 

Unclassified 
bacteria -0.66 0.59 0.30 -0.29 -0.33 0.45 -0.17   -0.51 0.44   -0.15   -0.25 

Unclassified 
fungi 0.27 -0.25 -0.66 0.56 0.30   0.39 -0.51   -0.24   -0.41 0.57 0.43 


