Dataset Open Access
Ioannis Manakos; Georgios Kordelas
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3403606</identifier> <creators> <creator> <creatorName>Ioannis Manakos</creatorName> <affiliation>Centre for Research and Technology - Hellas</affiliation> </creator> <creator> <creatorName>Georgios Kordelas</creatorName> <affiliation>Centre for Research and Technology - Hellas</affiliation> </creator> </creators> <titles> <title>Landscape and biodiversity indicators for Lake Prespa</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>Lake Prespa</subject> <subject>landscape and biodiversity indicators</subject> <subject>PLAND</subject> <subject>PD</subject> <subject>SHAPE_MN</subject> <subject>CA</subject> <subject>MPS</subject> <subject>MESH</subject> <subject>AWMPFD</subject> <subject>mountains</subject> </subjects> <contributors> <contributor contributorType="ContactPerson"> <contributorName>Ioannis Manakos</contributorName> <affiliation>Centre for Research and Technology - Hellas</affiliation> </contributor> <contributor contributorType="Producer"> <contributorName>Georgios Kordelas</contributorName> <affiliation>Centre for Research and Technology - Hellas</affiliation> </contributor> <contributor contributorType="ProjectManager"> <contributorName>Ioannis Manakos</contributorName> <affiliation>Centre for Research and Technology - Hellas</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2019-09-10</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3403606</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3403605</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecopotentialh2020</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Landscape and biodiversity indicators have been identified as crucial for detecting changes in the Land Cover/Habitat map target classes and evaluating threats and intense impacts on certain areas of a site. This analysis is useful to prevent future ecosystem degradation, update the preservation strategies or take immediate mitigation actions.</p> <p>Regarding Lake Prespa, Landscape and biodiversity indicators were generated for 2012. The Land Cover/Habitat map and Object-ID raster files were used as input to estimate the indicators. The outputs include a raster file of each indicator and a file &ldquo;indValues.csv&rdquo; containing the values of indicators per object.</p> <p>The calculated indicators are: (i) PLAND; (ii) PD; (iii) SHAPE_MN; (iv) CA; (v) MPS; (vi) MESH; (vii) AWMPFD. Indicator files are accompanied by INSPIRE metadata XML. Detailed information can be found in the &ldquo;Readme.pdf&rdquo; included in the zip containing the dataset.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/641762/">641762</awardNumber> <awardTitle>ECOPOTENTIAL: IMPROVING FUTURE ECOSYSTEM BENEFITS THROUGH EARTH OBSERVATIONS</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 67 | 67 |
Downloads | 19 | 19 |
Data volume | 5.6 GB | 5.6 GB |
Unique views | 57 | 57 |
Unique downloads | 19 | 19 |