Conference paper Open Access

Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling

Zhang, Rui; Freitag, Marcus; Albrecht, Conrad; Zhang, Wei; Lu, Siyuan


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Zhang, Rui</dc:creator>
  <dc:creator>Freitag, Marcus</dc:creator>
  <dc:creator>Albrecht, Conrad</dc:creator>
  <dc:creator>Zhang, Wei</dc:creator>
  <dc:creator>Lu, Siyuan</dc:creator>
  <dc:date>2019-09-16</dc:date>
  <dc:description>Zhang et al. (2019). Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling

In: Minghini, M., Grinberger, A.Y., Juhász, L., Yeboah, G., Mooney, P. (Eds.). Proceedings of the Academic Track at the State of the Map 2019, 27-28. Heidelberg, Germany, September 21-23, 2019. Available at https://zenodo.org/communities/sotm-2019 

DOI: 10.5281/zenodo.3387715</dc:description>
  <dc:identifier>https://zenodo.org/record/3387715</dc:identifier>
  <dc:identifier>10.5281/zenodo.3387715</dc:identifier>
  <dc:identifier>oai:zenodo.org:3387715</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.5281/zenodo.3387714</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/sotm-2019</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>OpenStreetMap</dc:subject>
  <dc:subject>GIScience</dc:subject>
  <dc:subject>Remote Sensing</dc:subject>
  <dc:subject>Big Data Analytics</dc:subject>
  <dc:subject>Machine learning</dc:subject>
  <dc:title>Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
142
83
views
downloads
All versions This version
Views 142142
Downloads 8383
Data volume 6.4 MB6.4 MB
Unique views 132132
Unique downloads 7878

Share

Cite as