Conference paper Open Access
Zhang, Rui; Freitag, Marcus; Albrecht, Conrad; Zhang, Wei; Lu, Siyuan
{ "inLanguage": { "alternateName": "eng", "@type": "Language", "name": "English" }, "description": "<p>Zhang et al. (2019). Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling</p>\n\n<p>In: Minghini, M., Grinberger, A.Y., Juhász, L., Yeboah, G., Mooney, P. (Eds.). Proceedings of the Academic Track at the State of the Map 2019, 27-28. Heidelberg, Germany, September 21-23, 2019. Available at <a href=\"https://zenodo.org/communities/sotm-2019\">https://zenodo.org/communities/sotm-2019</a> </p>\n\n<p>DOI: <a href=\"http://doi.org/10.5281/zenodo.3387715\">10.5281/zenodo.3387715</a></p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", "@type": "Person", "name": "Zhang, Rui" }, { "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", "@type": "Person", "name": "Freitag, Marcus" }, { "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", "@type": "Person", "name": "Albrecht, Conrad" }, { "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", "@type": "Person", "name": "Zhang, Wei" }, { "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", "@type": "Person", "name": "Lu, Siyuan" } ], "headline": "Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling", "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", "datePublished": "2019-09-16", "url": "https://zenodo.org/record/3387715", "@type": "ScholarlyArticle", "keywords": [ "OpenStreetMap", "GIScience", "Remote Sensing", "Big Data Analytics", "Machine learning" ], "@context": "https://schema.org/", "identifier": "https://doi.org/10.5281/zenodo.3387715", "@id": "https://doi.org/10.5281/zenodo.3387715", "workFeatured": { "url": "https://2019.stateofthemap.org", "alternateName": "SotM 2019", "location": "Heidelberg, Germany", "@type": "Event", "name": "State of the Map 2019" }, "name": "Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling" }
All versions | This version | |
---|---|---|
Views | 142 | 142 |
Downloads | 83 | 83 |
Data volume | 6.4 MB | 6.4 MB |
Unique views | 132 | 132 |
Unique downloads | 78 | 78 |