Conference paper Open Access

Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling

Zhang, Rui; Freitag, Marcus; Albrecht, Conrad; Zhang, Wei; Lu, Siyuan


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>Zhang et al. (2019). Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling</p>\n\n<p>In: Minghini, M., Grinberger, A.Y., Juh&aacute;sz, L., Yeboah, G., Mooney, P. (Eds.). Proceedings of the Academic Track at the State of the Map 2019, 27-28. Heidelberg, Germany, September 21-23, 2019. Available at <a href=\"https://zenodo.org/communities/sotm-2019\">https://zenodo.org/communities/sotm-2019</a>&nbsp;</p>\n\n<p>DOI: <a href=\"http://doi.org/10.5281/zenodo.3387715\">10.5281/zenodo.3387715</a></p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", 
      "@type": "Person", 
      "name": "Zhang, Rui"
    }, 
    {
      "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", 
      "@type": "Person", 
      "name": "Freitag, Marcus"
    }, 
    {
      "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", 
      "@type": "Person", 
      "name": "Albrecht, Conrad"
    }, 
    {
      "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", 
      "@type": "Person", 
      "name": "Zhang, Wei"
    }, 
    {
      "affiliation": "Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States", 
      "@type": "Person", 
      "name": "Lu, Siyuan"
    }
  ], 
  "headline": "Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2019-09-16", 
  "url": "https://zenodo.org/record/3387715", 
  "@type": "ScholarlyArticle", 
  "keywords": [
    "OpenStreetMap", 
    "GIScience", 
    "Remote Sensing", 
    "Big Data Analytics", 
    "Machine learning"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.5281/zenodo.3387715", 
  "@id": "https://doi.org/10.5281/zenodo.3387715", 
  "workFeatured": {
    "url": "https://2019.stateofthemap.org", 
    "alternateName": "SotM 2019", 
    "location": "Heidelberg, Germany", 
    "@type": "Event", 
    "name": "State of the Map 2019"
  }, 
  "name": "Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling"
}
142
83
views
downloads
All versions This version
Views 142142
Downloads 8383
Data volume 6.4 MB6.4 MB
Unique views 132132
Unique downloads 7878

Share

Cite as