Conference paper Open Access
Zhang, Rui; Freitag, Marcus; Albrecht, Conrad; Zhang, Wei; Lu, Siyuan
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3387715</identifier> <creators> <creator> <creatorName>Zhang, Rui</creatorName> <givenName>Rui</givenName> <familyName>Zhang</familyName> <affiliation>Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States</affiliation> </creator> <creator> <creatorName>Freitag, Marcus</creatorName> <givenName>Marcus</givenName> <familyName>Freitag</familyName> <affiliation>Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States</affiliation> </creator> <creator> <creatorName>Albrecht, Conrad</creatorName> <givenName>Conrad</givenName> <familyName>Albrecht</familyName> <affiliation>Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States</affiliation> </creator> <creator> <creatorName>Zhang, Wei</creatorName> <givenName>Wei</givenName> <familyName>Zhang</familyName> <affiliation>Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States</affiliation> </creator> <creator> <creatorName>Lu, Siyuan</creatorName> <givenName>Siyuan</givenName> <familyName>Lu</familyName> <affiliation>Data Intensive Physical Analytics, TJ Watson Research Center, IBM Research, Yorktown Heights, NY, United States</affiliation> </creator> </creators> <titles> <title>Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>OpenStreetMap</subject> <subject>GIScience</subject> <subject>Remote Sensing</subject> <subject>Big Data Analytics</subject> <subject>Machine learning</subject> </subjects> <dates> <date dateType="Issued">2019-09-16</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3387715</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3387714</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sotm-2019</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Zhang et al. (2019). Towards Scalable Geospatial Remote Sensing for Efficient OSM Labeling</p> <p>In: Minghini, M., Grinberger, A.Y., Juh&aacute;sz, L., Yeboah, G., Mooney, P. (Eds.). Proceedings of the Academic Track at the State of the Map 2019, 27-28. Heidelberg, Germany, September 21-23, 2019. Available at <a href="https://zenodo.org/communities/sotm-2019">https://zenodo.org/communities/sotm-2019</a>&nbsp;</p> <p>DOI: <a href="http://doi.org/10.5281/zenodo.3387715">10.5281/zenodo.3387715</a></p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 142 | 142 |
Downloads | 83 | 83 |
Data volume | 6.4 MB | 6.4 MB |
Unique views | 132 | 132 |
Unique downloads | 78 | 78 |