There is a newer version of this record available.

Software Open Access

ivis: dimensionality reduction in very large datasets using Siamese Networks

Ignat Drozdov; Benjamin Szubert


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3387279</identifier>
  <creators>
    <creator>
      <creatorName>Ignat Drozdov</creatorName>
      <affiliation>Bering Limited</affiliation>
    </creator>
    <creator>
      <creatorName>Benjamin Szubert</creatorName>
      <affiliation>Bering Limited</affiliation>
    </creator>
  </creators>
  <titles>
    <title>ivis: dimensionality reduction in very large datasets using Siamese Networks</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-09-05</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3387279</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/beringresearch/ivis/tree/1.4.1</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2907841</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.4.1</version>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Added support for supervised multi-label dimensionality reduction.&lt;/p&gt;</description>
  </descriptions>
</resource>
264
106
views
downloads
All versions This version
Views 26440
Downloads 1062
Data volume 542.9 MB19.2 MB
Unique views 21638
Unique downloads 211

Share

Cite as