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Abstract

The maximum depth classifier was the first attempt to use data depths instead of multi-
variate raw data to construct a classification rule. Recently, the DD–classifier has resolved
several serious limitations of the maximum depth classifier but some issues still remain. This
paper is devoted to extending the DD–classifier in the following ways: first, to surpass the
limitation of the DD–classifier when more than two groups are involved; second, to apply
regular classification methods (such as kNN, linear or quadratic classifiers, recursive parti-
tioning, and others) to DD–plots to obtain useful insights through the diagnostics of these
methods; and third, to integrate various sources of information (data depths, multivariate
functional data) in the classification procedure in the unified way. Moreover, as the DD–
classifier trick is especially useful in the functional framework, an enhanced revision of several
functional data depths is proposed in the paper. A simulation study and applications to some
classical real datasets are also provided showing the power of the new proposal.

Keywords: DD–Classifier, Functional Depths, Functional Data Analysis

1 Introduction

In the one-dimensional case, it is easy to use natural order to order points in the full space with

respect to a probability distribution P, with the median being the innermost point and the extreme
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percentiles the outermost points. Moreover, if FP denotes the distribution function of P, then the

index

DP (x) = min{FP (x), 1− FP (x)} (1)

measures how deep x ∈ R is with respect to P. This index can also be applied to samples replacing

FP by the empirical distribution function. Other possibilities for defining DP (x) are available (see,

for instance, Subsection 3.1), including those satisfying that DP (x) decreases with the distance

between x and the mean of P, which, in turn, is the deepest point. Most of them are positive and

bounded, and the index is bigger the deeper the point.

In the multidimensional case there exists no natural order and consequently ordering the points

from the inner to the outer part of a distribution or sample is not so easy. To overcome this

difficulty, several indices have been proposed under the common name of “depths”: Given a

probability measure P defined on Rp, p ≥ 1, and x ∈ Rp a depth of x with respect to P, DP (x),

is an index of how deep x is with respect to P. A nice review of multivariate depths can be found

in Liu et al. (1999).

Those problems are more difficult to solve in the functional case. However, there are also several

depths that are valid in this kind of space. We present some of them in Section 3 along with

some extensions that allow us to create new depths taking into account pieces of information from

several sources.

Several applications of depths in multivariate and functional statistics have been proposed to date

in the literature including exploratory and descriptive statistics and statistical tests of hypothesis,

among others. In this paper, we are mostly interested in the possibilities that they offer in the

supervised learning problem from a nonparametric point of view.

To the best of our knowledge, the first paper in which depths were used for this purpose was Liu

(1990), where the maximum depth classifier was proposed. The idea is the following: Given two

probabilities (or classes, or groups) P and Q, and a depth, D, we classify the point x as produced

by P if DP (x) > DQ(x). This procedure was fully developed in Ghosh and Chaudhuri (2005).

A main tool in this paper is the DD–plots. These plots were introduced in Liu et al. (1999) for

graphical comparisons of two multivariate distributions or samples based on data depth. A DD–

plot is a two-dimensional graph (regardless of the dimension of the space supporting the samples)

in which, given two probability distributions, P and Q on Rp, for every point x ∈ Rp, the pair
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Figure 1: DD–plots of two samples drawn from two-dimensional normal distributions. In both

cases P is a standard 2-dimensional distribution. Q differs from P in the mean in the first DD–plot

and in the covariance matrix in the second.

(DP (x), DQ(x)) is represented. We show examples of DD–plots in Figures 1 and 2.

It was shown in Liu et al. (1999) that some distributional differences, such as location, scale,

skewness and kurtosis differences, are associated with characteristic patterns in the DD–plot.

Therefore, DD–plots can provide simple diagnostic tools for visual comparisons of two samples of

any dimension. For example, Li and Liu (2004) develop several nonparametric tests of multivariate

locations and scales by detecting possible departures from the expected patterns of graphs in DD–

plots.

In this paper we are interested in the application of DD–plots to classifying points. In the example

of Figure 1, both DD–plots correspond to samples from bidimensional normal distributions, where

P, in both cases, is standard normal. The mean of Q in the first DD–plot is (2, 2)t and its

covariance is the identity. In the other case Q is centered but its covariance is twice the identity.

In both graphs, points in blue come from P and points in red from Q. Both sample sizes were

500. In both graphs the main diagonal is also drawn. According to the maximum depth principle,

points above (resp. below) this line are classified as produced by Q (resp. by P); i.e., the main

diagonal splits the DD–plot into two classes which give the maximum depth classifier.

This classification procedure is optimal in the first case, but, obviously it is plainly wrong in the

second since it classifies almost all points as produced by distribution Q. An interesting idea in Li

3
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Figure 2: Scatterplot of two uniform samples and associated DD–plot.

et al. (2012) was to notice that in spite of failures of the maximum depth classifier, the DD–plot

could contain information enabling a good classifier to be obtained.. For instance, in the second

DD–plot in Figure 1 the proportion of red points is very high in an area close to the vertical axis.

The authors of Li et al. (2012) proposed replacing the main diagonal by a function whose graph

splits the DD-plot into two zones with the lowest misclassification rate (in that paper only the

polynomial case is fully developed). This is termed the DD-classifier.

Obviously, the DD–classifier is a big step forward in solving the limitations of the maximum depth

classifier and in fact, in the problem cited above, according to Li et al. (2012), the DD–classifier

gives a classification very close to the optimal classifier. However, there are some situations in

which a function can not classify the points correctly. Let us consider the situation presented in

Figure 2. The points in the scatterplot are from two samples, each with sizes 2,000 each. The

red points were taken from a uniform distribution, denoted by Q, on the unit ball centered on

(−1, 0)t. The blue points are from distribution P which is uniform on the union of two rings: a

ring centered at (−1, 0)t with inner (resp. outer) radius of .5 (resp. .6), and a ring of the same size

centered at (0.3, 0)t. The optimal classifier classifies points in both rings to P and the rest to Q.

The associated DD–plot is also shown in Figure 2. It is obvious that no function can split the

DD–plot in two zones giving the optimal classifier since this would require a function separating

the points in areas with blue points from the rest of the DD–plot, which is impossible. However,

4



this goal can be achieved with a classifier such as the kNN applied to the DD–plot, as proposed

in Vencálek (2011).

Having these ideas in mind, the first objective of this paper is to explore the possibility of applying

regular classification methods (such as kNN, linear or quadratic classifiers, recursive partitioning

,or others) to DD–plots and obtaining useful insights through the diagnostics of these methods.

Additionally, we wish to overcome the limitation of the DD–classifier when more than two dis-

tributions are involved (the solution for this problem in Li et al. (2012) was to apply a majority

voting scheme). Lastly, we want to be able to integrate different sources of information in the

same classification procedure. The last goal is specially interesting in the functional context where

some transformations of the original curves (such as derivatives, for example) could be computed

and used for classification. This paper is mainly focused on the functional setting, although the

procedure can also be applied to multivariate data. In particular, we want to remark that some

of the diagnostic tools of the classification procedures employed here can be used to assess the

relevance of the available functional information. In order to avoid making the paper too long,

we only show this idea in the second example in Section 4 where we conclude that the relevant

information is contained in the second derivative of the curves.

The paper is organized as follows: In Section 2 we present the basic ideas behind the proposed

classifier. Section 3 is devoted to presenting some functional depths and to analyzing some modi-

fications which could improve them. In Section 4 we present two examples of several classification

procedures applied to DD–plots. Section 5 contains the results of some simulations as well as

applications to some real data sets. The paper ends with a discussion of the proposed method.

2 DDG-Classifier

In Li et al. (2012), the DD–plot is defined, in the case in which only two groups are involved, as

a two-dimensional graph where the pairs (D1(x), D2(x)) are plotted. Here, Di(x) is the depth of

the point x respect to the data in the i-th group. With this notation, the DD–plot is, to put it

simply, a map between the (functional) space X where the data are defined, and R2:

X → R2

x → (D1(x), D2(x)).

5



The aim of the DD–classifier is to identify the tow groups using the information provided by the

DD–plot. Since we have transformed our data to be in R2, it happens that the task of separating

classes can be made in a much simpler framework, assuming that the depths contain relevant

information about how to separate the groups. Thus, the choice of a depth has now become a

crucial step. In Li et al. (2012) the classification rule was a polynomial function (up to a previously

fixed order k), ensuring that the point (0, 0) belongs to it. This rule has two main drawbacks.

First, the number of different polynomials of order k that can serve as a classification rule is
(
N
k

)
where N is the sample size. This number is the possible ways of selecting k points from N such

that each of the selections has an associated order k polynomial which interpolates between these

k points and (0, 0)t. Clearly, as N increases, the complexity of the estimation process grows at a

rate of order Nk. Second, a polynomial always gives a connected border between groups and does

not allow the construction of, say, islands (zones assigned to one group completely surrounded by

others, like the horizontal red band between the blue zones in the DD-plot in Figure 2) on the

map. Finally, the problem of classifying more than two groups was not completely solved in the

original paper.

The DDG–classifier which we propose here tries to offer a unified solution to these drawbacks.

Suppose that we have implementations of a process in the product space X = X1 × · · · × Xp

(multivariate (functional) data) where we have g groups (classes or distributions) to be separated

using data depths. To describe the DDG–classifier, let us begin by assuming that p = 1. In this

case, the DDG–classifier begins by selecting a depth D and computing the following map:

X → Rg

x → d = (D1(x), . . . , Dg(x)).

We can now apply any available classification procedure that works in a g–dimensional space to

separate the g groups. The same idea is applied in Lange et al. (2014). The main differences

between Lange et al.’s and our proposal are that in the former only finite-dimensional data are

considered, whereas in this paper, this map is a preliminary step to constructing what is called

the feature space. Also, that the authors only use a special kind of linear classifier on this feature

space which requires making pairwise comparisons, thus classifying points using a majority vote

scheme. Mosler and Mozharovskyi (2014) applies this classifier to functional data, but only after

applying a dimension-reduction technique to the data.

6



The extension of the procedure to the case p > 1 is simple: we only need to select an appropriate

depth Dj for each subspace Xj and consider the map

X = X1 × . . .×Xp → Rg×p

x = (x1, . . . , xp) → d = ( ~D1(x1), · · · , ~Dp(xp)),

where ~Di(xi) is the g-dimensional vector giving the depths of the point xi ∈ Xi with respect to

the groups 1, . . . , g.

Our last consideration is related to the selection of the depth. As we stated before, the chosen

depth may influence the result. The solution in Li et al. (2012) was to choose the right depth by

cross-validation. Our proposal here is to use several depths at the same time. To be precise, for

the i-th component of the product space, we can try ki ≥ 1 different data–depth functions. The

DDG–classifier constructs the following map:

X = X1 × . . .×Xp → RG

x = (x1, . . . , xp) → d = ( ~D1(x1), . . . , ~D
k1(x1), · · · , ~D1(xp) . . . , ~D

kp(xp)).

where the notation ~Dk(xi) denotes the g–dimensional vector of the k-th depth applied to the i-th

component of x (i.e., the depths of xi with respect to the g groups computed using the depth Dk)

and G = g
∑p

i=1 ki. Notice that, with an obvious abuse of notation, we have employed the same

notation ~Dk for all the depths applied in the marginal spaces in spite of the fact that they can be

different.

With this map, the DDG–classifier translates the information in X into a vector of dimension

G. This feature is especially interesting in the functional context or when dealing with high-

dimensional spaces. But new important questions arise, related to how representative the previous

maps are. Moreover, if a practitioner considers G too high, how should a useful depth for the

classification problem be selected from among all the possibilities? The answer to the latter

question can be assessed using the distance correlation R, proposed in Székely et al. (2007), which

characterizes independence between vectors of arbitrary finite dimensions. Recently, in Székely and

Rizzo (2013), a bias-corrected version is considered and a test of independence developed. Here,

our recommendation is to compute the bias-corrected distance correlation between the multivariate

vector of depths (d) and the indicator of the groups
(
Y =

(
1{x∈g1},1{x∈g2}, . . . ,1{x∈gg}

))
, and select
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the depth that maximizes the distance correlation from among the available depths. In subsequent

steps, other depths can be added that have a low distance correlation between the new depth and

those selected in previous steps. Also, using the recent extension of the distance correlation to

functional spaces provided by Lyons (2013), this tool could be useful for assessing how much of

the relation between the functional data and the indicator of the groups can be collected. Later,

in Section 4, we will provide an example of the application of these ideas to the selection of the

depth.

The last step in the DDG–classifier procedure is to select an appropriate classification rule. For-

tunately, we now have a purely multivariate classification problem in dimension G and many

procedures are known to handle this problem (see, for example, Ripley (1996)). The following

multivariate classification procedures will be considered here in the simulations and real data

analysis attending to their simplicity and/or easiness to draw inferences:

1. Linear Discriminant Analysis (LDA): This is the most classical discriminant procedure.

It is due to Fisher and is a particular application of the Bayes’ Rule Classifier under the

assumption that all the groups or classes in the population have a normal distribution with

different means (
{
d̄i

}g
i=1

) but the same covariance matrix (Σ). The LDA classification rule

assigns an element d to the class i which satisfies that Lij(d) > 0, j = 1, . . . g, j 6= i where

Lij (d) = −1

2

{
d̄T
i Σ−1d̄i − d̄T

j Σ−1d̄j

}
+ log

(
πi
πj

)
+
(
d̄i − d̄j

)T
Σ−1d,

where πi is the a priori probability for class i.

2. Quadratic Discriminant Analysis (QDA): This is similar to LDA, except that QDA does

not assume equality between covariance matrices. The QDA classification rule assigns an

element d to the class i satisfying Qij(d) > 0, j = 1, . . . g, j 6= i, where

Qij (d) = −1

2

{
log
|Σi|
|Σj|

+ d̄T
i Σ−1i d̄i − d̄T

j Σ−1i d̄j

}
+ log

(
πi
πj

)
+

+ d̄T
i Σ−1i d− d̄T

j Σ−1j d− 1

2
dT
(
Σ−1i − Σ−1j

)
d.

3. Logistic Regression Model (GLM): As a particular case of Generalized Linear Models, the

logistic regression model models the posterior probability given d as

p(i|d) = log

(
p(i|d)

1− p(i|d)

)
= αi + βT

i d,
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and the point d is assigned to class i where p(i|d) > p(j|d), j = 1, . . . , g, j 6= i.

4. Generalized Additive Models (GAM): Generalized Additive Models (see Wood (2004)) relax

the linearity assumption in GLMs, allowing the use of a sum of general smooth functions fj

for the posterior probability; i.e.,

p(i|d) = log

(
p(i|d)

1− p(i|d)

)
= αi +

g∑
k=1

fk,i(dk),

where dk is the k-th component of d. The functions fk,i may belong to a known parametric

family (polynomials, for instance) or they may even be functions to be estimated non-

parametrically.

5. Nonparametric classification methods : These methods are based on non-parametric esti-

mates of the densities of the groups. The most simple (and classical) one is k–nearest

neighbour (kNN) in which, given k ∈ N, the point d is assigned to the class containing a

majority of the k nearest data points in the training sample.

Another possibility is to estimate p(i|d) through the Nadaraya–Watson estimator:

p(i|d) =

∑N
n=1 1Gn=iK (m(d,dn)/h)∑N

n=1K (m(d,dn)/h)
,

where N is the size of the training sample, Gn is the class of n-th point in the training sample,

K is a kernel and m(·, ·) is a suitable distance in RG which is re-scaled by the bandwidth

parameter h. This method will be denoted by NP.

A kNN method could be considered an NP method using the uniform kernel and a locally

selected bandwidth. These two methods are quite flexible and powerful but unlike the

previous ones, it is not easy to diagnose which part of the vector d is important for the final

result.

6. Classification trees (tree): A classification tree is a ordered sequence of questions that split

the data set until a prediction of the class is obtained. The questions (nodes) are formulated

in terms of variable shortcuts dividing the data set into two branches and proceeding itera-

tively until no more splits can be made (with a reasonable criterion). A class is associated

with every terminal node and, given a point, the classification rule is as simple as answering

9



the questions until a terminal node is reached. The group assigned is then is the class of

this terminal node. Classification trees are simple and easy to interpret but they split the

space into hyperrectangles that may not be very close to the optimal solution.

7. Finally, there are some other classification methods that could be employed here such as, for

example, artificial neural networks (ANN), support vector machine (SVM) or multivariate

adaptive regression splines (MARS), among others, but the application of any of these

methods needs the choice of several auxiliary parameters or designs and the inference from

them is not as straightforward as from the above methods. Nevertheless, in some cases, they

could be options to explore when only prediction is required.

The choice among the different classifiers could be influenced by their theoretical properties and/or

how easy it is to draw inferences. For example, from the theoretical point of view, the kNN classifier

can achieve optimal rates close to Bayes’ risk (a complete review on this classifier can be found in

Hall et al. (2008)) and it could be considered as the standard rule. But better inferences can be

drawn from more simple classifiers such as LDA, Logistic or GAM models. Moreover, as discussed

in Hand (2006), such simple classifiers are usually hard to beat in real life scenarios, as they add

interpretability to the classification rule, which is sometimes more important than predictability.

3 Data Depths for Functional Data

As mentioned earlier, the DD–classifier is especially interesting in the functional context because

it enables the dimension of the classification problem to be decreased dramatically from infinite to

G. In this section, several functional data depths that will be used later with the DDG–classifier

will be reviewed. Some extensions to cover multivariate functional data are also provided.

3.1 Fraiman and Muniz Depth (FM)

The FM depth (Fraiman and Muniz (2001)) was the first to be proposed in the literature in a

functional context. It is also known as integrated depth by its definition. Given a sample x1, . . . , xN

of functions defined on the interval [0, T ], let St = (x1(t), . . . , xN(t)) be the values of those functions

on a given t ∈ [0, T ]. Denote by FN,t, the empirical distribution of the sample St and by Zi(t)
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a univariate depth of xi(t) in this sample (in the original paper, Zi(t) = 1− |1/2− FN,t (xi(t))|).

Then the FM depth for the i-th datum is defined as:

FMi =

∫ T

0

Zi(t)dt. (2)

The first obvious generalization of the FM depth is to consider different univariate depths to be

integrated. A list of potential depths can be found in Liu et al. (1999), from which we select the

following for the univariate case:

• Tukey depth, ZTD
i (t) = min (FN,t (xi(t)) , 1− FN,t (xi(t)

−)).

• Simplicial depth, ZSD
i (t) = 2FN,t (xi(t)) (1− FN,t (xi(t)

−)).

• Likelihood depth, ZLD
i (t) = f̂(xi(t)), where f̂ is a consistent estimate of the density function

at t.

• Mahalanobis depth, ZMhD
i (t) =

[
1 + (xi(t)− µ̂(t))2 /σ̂2(t)

]−1
, where µ̂(t), σ̂2(t) are estimates

of the mean and variance at point t.

The choice of a particular univariate depth modifies the behavior of the FM depth, and the deepest

curve, for instance, may vary depending on this selection. In particular, the choice of the SD inside

the FM depth is a particular case of the modified band depth (López-Pintado and Romo (2009)).

An interesting scenario arises when we are faced with multivariate functional data; i.e., when

the elements belong to a product space of functional spaces: X = (X 1 × · · · × X p). A depth

combining the information of all components seems an appealing idea because it will maintain the

dimension of our classification problem low, but it does so at the risk of losing some information.

This can be done in the following two ways:

• Weighted depth: given xi = (x1i , . . . , x
p
i ) ∈ X , compute the depth of every component,

obtaining the values FM(xji ), j = 1, . . . , p, and then define a weighted version of the FM–

depth (FMw) as:

FMw
i =

p∑
i=j

wjFM(xji )

where ~w = (w1, . . . , wp) is a suitable vector of weights.

11



In the choice of the weights, the potential difference in the scale of the depths must be taken

into account (for instance, the FM depth using SD as the univariate depth takes values in

[0, 1], whereas the Tukey depth always belongs to the interval [0, 1/2]).

• Common support : Suppose that all X i have the same support [0, T ]. (This happens, for

instance, when using the curves and the derivatives). In this case, we can define a p-

summarized version of FM–depth (FMp) depth as:

FMp
i =

∫ T

0

Zp
i (t)dt,

where Zp
i (t) is a p-variate depth of the vector (x1i (t), . . . , x

p
i (t)) with respect to the sample

at point t. Particular applications of this idea can be found in Ieva and Paganoni (2013)

and Claeskens et al. (2014). The first paper provides a generalization of the MBD that uses

simplicial depth as p-variate depth, and the second uses the Tukey halfspace depth.

3.2 h–Mode Depth (hM)

The h–mode depth was proposed in Cuevas et al. (2007) as a functional generalization of the

likelihood depth with the idea of measuring how surrounded one curve is with respect to the

others. The population h–mode depth of a datum x0 is given by:

fh(x0) = E [K(m (x0, X) /h)] , (3)

where X is a random element describing the population, m is a suitable metric or semi-metric, K(t)

is an asymmetric kernel and h is the bandwidth parameter. Given a random sample x1, . . . , xN of

X, the empirical h–mode depth is defined as:

f̂h(x0) = N−1
N∑
i=1

K(m (x0, xi) /h). (4)

Equation (4) is similar to the usual nonparametric kernel density estimator but with a main

difference: as our interest is focused on what happens in a neighborhood of each point, the

bandwidth is not intended to converge to zero when N →∞, and the only constraint is that the

bandwidth should be large enough to avoid pathological situations (for instance, the bandwidth

should not be so small that every point in the sample has the same depth equal to K(0)/N).
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A weighted depth of the components can always be applied to extend this depth when we

have multivariate functional data. Another possibility in this case is to construct a new met-

ric from those existing in each component of the product space and combining them using a

p-dimensional metric such as, for example, the Euclidean; i.e. m ((x10, . . . , x
p
0) , (x

1
i , . . . , x

p
i )) :=√

m1 (x10, x
1
i )

2
+ · · ·+mp (xp0, x

p
i )

2 where mi denotes the metric in the i-component of the product

space. It is important here to ensure that the different metrics of the spaces have similar scales

to avoid one single component dominating the overall distance.

3.3 Random Projection Methods

There are several depths based on random projections using basically the same scheme. Given a

sample x1, . . . , xN of functions in a Hilbert space with scalar product 〈·, ·〉, a unit vector a in this

space is selected (independently of the xi’s) and the data are projected onto the one-dimensional

subspace generated by a. The sample depth of a datum x is defined as the univariate depth of

the corresponding projection 〈a, x〉 with respect to the projected sample {〈a, xi〉}Ni=1. Although

theoretically a single projection is enough (see Cuesta-Albertos et al. (2007)), random projection

methods usually generate several directions, a1, . . . , aR, R > 1, to increase the power. These

methods differ in the univariate depth they employ and in how the depths obtained from those

projections are summarized. Here, we will discuss:

• Random Projection (RP): Proposed in Cuevas et al. (2007), it uses univariate Tukey depth

and summarizes the depths of the projections through the mean. So, if Dar(x) is the depth

associated with the r–th projection, then

RP (x) = R−1
R∑

r=1

Dar(x).

The extensions to multivariate functional data are similar to those proposed for the FM depth.

The first option is to construct a weighted depth from the depth of each component. The second

possibility is to use a p-variate depth with the projections in the same way as we proposed for the

FM depth, although in this case it is not necessary to assume that all components have a common

support. The RPD depth proposed in Cuevas et al. (2007) is an example of this extension using

the original curves and their derivatives as the components of the multivariate functional data,

which in this case are two-dimensional.
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4 Illustration of Regular Classification Methods in DD-

Plots
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Figure 3: From left to right, top to bottom DD–plot using DD1, DD2, DD3 and Maximum Depth

classifiers to the DD-plot in Figure 2.b. The one-dimensional depth in all cases is the Tukey depth.

This section is devoted to exploring the different classifiers that can be applied to DD–plots as an

alternative to the proposal in Li et al. (2012). In that paper, given k0 = 1, 2, . . ., the classifier is

the polynomial g, with degree at most k0 such that g(0) = 0, that gives the lowest misclassification

error in the training sample. We denote this classifier by DDk0. This polynomial is constructed

by selecting k0 points of the sample and taking the polynomial going through these points and

the origin. As previously stated, this construction has two main drawbacks: first, the number of

possible different polynomials depends on the sample size and increases polynomially with order

k0. Second, the region given by the polynomial classifier cannot have “islands” and this assumption
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sometimes fails. Finally, the maximum depth classifier is a particular case of DD1, fixing the slope

with a value of 1.

The application to the example in Figure 2.b is plotted in Figure 3, which shows the results for

DD1, DD2, DD3 and the maximum depth classifier. The titles of the subplots are in the general

form DD–plot(depth,classif.) where depth is the depth employed (HS in this example denotes the

Tukey depth) and classif. denotes the classification method. The sample points are colored red

or blue to indicate which group the belong to. The background image is colored light red and

light blue to indicae the areas where a new data point would be assigned to red and blue groups

respectively. The misclassification error rates are, respectively, (0.262, 0.215, 0.201, 0.292). There

is a clear superiority of the DD3 method over maximum depth but there are some areas (see for

example, the rectangle [0.0, 0.2] × [0.0, 0.1]) where a polynomial cannot satisfactorily classify the

data.

In Figure 4, the rest of the classifiers for the same example are shown: LDA, QDA, kNN, GLM,

GAM and tree. The misclassification error rates are, respectively, (0.472, 0.51, 0.136, 0.472, 0.152,

0.201). Clearly, the LDA, QDA and GLM methods cannot achieve the result obtained by DD3

which is outperformed in turn by kNN and GAM. It is important to take into account that the

optimal classifier gives a theoretical misclassification error of 0.138, very close to the result obtained

with the kNN procedure. The key to this improvement over the DD-classifier is the flexibility of

two methods that can model such complicated situations.

The next example contains multivariate functional data. The Tecator data set is a standard

reference among the functional data practitioners. The data are drawn from a spectrometric

problem where the goal is to predict the fat content of meat slices using absorbance curves provided

by an automatic device called the Tecator Infrared Food Analyzer. Many papers have treated

this data set from the regression or the classification point of view (see, for example, Ferraty

and Vieu (2009), Febrero-Bande and González-Manteiga (2013) and references therein) with the

conclusion that the relevant information for the prediction or the classification is located mainly

in the second derivative. For this illustration, let us suppose that we are interested in classifying

those samples with percentage of fat above 15% (ifat=1{Fat≥0.15}) using the absorbance curves (ab)

and their second derivative (ab2) using the DDG classifier. First, there are many possibilities for

selecting the depth. For every depth mentioned in the previous section (FM, RP, hM), at least
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five possibilities can be explored. These are denoted by the following suffices:

.0 : The depth uses only original trajectories. d = (D0
0(x), D0

1(x))

.2 : The depth only uses the second derivative. d = (D2
0(x), D2

1(x))

.w : The depth is computed using a weighted sum of the depth of the original trajectories and

the depth of the second derivative. d = (Dw
0 (x), Dw

1 (x)) with Dw
i = 0.5D0

i + 0.5D2
i .

.p: The depths of the trajectories and their derivatives (a two dimensional functional data sets)

are combined within the depth procedure. With FM and RP depths, a bivariate depth is

employed in the computations. The hM method uses an Euclidean metric as the combination

of the metrics in the subspaces. d = (Dp
1(x), Dp

2(x))

.m: For the DDG–classifier, the vector of all depth/group is used. d = (D0
0(x), D0

1(x), D2
0(x), D2

1(x)).

FM.0 FM.2 FM.w FM.m FM.p

R(ifat,d) 0.081 0.711 0.4 0.356 0.081

RP.0 RP.2 RP.w RP.m RP.p

R(ifat,d) 0.079 0.734 0.339 0.248 0.079

hM.0 hM.2 hM.w hM.m hM.p

R(ifat,d) 0.161 0.749 0.702 0.727 0.161

Table 1: Distance correlation between ifat and the different options for depths for the Tecator

data set

As mentioned above, the distance correlation proposed in Székely et al. (2007) can help detect the

depth that best summarizes the classification variate. The distance correlation between the group

variate (ifat) and the different depths are shown in Table 1. This correlation can also be computed

with respect to the functional covariates (R(ifat, ab)=0.188, R(ifat, ab2)=0.673) supporting the

idea that the important information for classification is contained in the second derivative and

that the depths based on the second derivative explain at least the same amount of information

as the functional covariate does. In particular, only FM.2, RP.2, hM.2, hM.w, hM.m have values

above 0.7.
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The next step is to select a classifier that takes advantage of the dependence found by the distance

correlation measures. Among all the possibilities, the kNN method seems a good choice from the

predictive point of view because it is quite simple to implement. But from the diagnosis point of

view, a classifier like the GLM may be preferable. Using the hM.m depth, we have four variates:

ab.mode.0, ab.mode.1, ab2.mode.0, ab2.mode.1 where the notation var.depth.group stands for the

depth computed for variate var with respect to the points in the group group.

The result using a GLM as classifier is shown in Figure 5 with the combinations of the four

variates, showing clearly that those associated with the second derivative are able to separate the

tow groups more efficiently. More interesting is that the contribution of each component can be

assessed through the diagnosis of the GLM. The classical diagnosis of the estimates of a GLM

model is shown in Table 2 where the variates associated with the depths of the second derivative

are both significant whereas for the original curves, the variates associated with the depth are only

significant for the first group.

Estimate Std. Error z value P(> |z|)

(Intercept) 3.538 2.161 1.637 0.102

ab.mode.0 −0.473 0.166 −2.841 0.004

ab.mode.1 0.054 0.155 0.347 0.729

ab2.mode.0 −0.471 0.103 −4.585 0

ab2.mode.1 1.09 0.301 3.624 0

Table 2: Output for the GLM classifier in the Tecator data set

For the remaining classifiers, 200 runs were done, randomly splitting the sample between a training

component (165) and a test component(50). The GLM (3.5%) performs quite well,l and slightly

better than the the classifier using kNN (3.9%). The best result among the selected depths,

however, is obtained by the combination hM.m–NP with 2.7%. So, in conclusion, the important

decision to be made in this case is the selection of the depth (here depending on the second

derivative), although almost all classifiers provide similar results.
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5 A Simulation Study and the Analysis of Some Real Data

Sets.

Four models (inspired by those in Cuevas et al. (2007)) were simulated in order to check the

performance of the proposed classifier. In all cases, the curves are obtained from the process

X·j(t) = mj(t) + e·j(t), where mj is the mean function of group j = 1, 2 and ej is a Gaussian

process with zero mean and Cov(e·j(s), e·j(t)) = θj exp(− |s− t| /0.3). In all the models, θ1 = 0.5

and θ2 = 0.25, giving the second group half the error of the first. The functions also include an

additional parameter k which is fixed at k = 1.1; thus this parameter has no influence on the

results. The functions were generated in the interval [0, 1] using an equispaced grid of 51 points.

• Model 1 : The population P1 has mean m1 = 30(1−t)tk. The mean for P2 is m2 = 30(1−t)kt.

• Model 2 : The population P1 is the same as in Model 1 but P2 is bimodal since it is composed

of two subgroups as a function of a binomial variate I with P (I = 1) = 0.5. Here, m2,I=0 =

25(1− t)kt and m2,I=1 = 35(1− t)kt.

• Model 3 : Both populations are composed of two subgroups, in which the subgroup means of

the first group are m1,I=0 = 22(1 − t)kt and m1,I=1 = 30(1 − t)kt, and the subgroup means

for the second group are m2,I=0 = 26(1− t)kt and m2,I=1 = 34(1− t)kt.

• Model 4 : This uses the same subgroups defined in Model 3 but considers each subgroup as

a group itself. So, this is an example with four groups.

The simulation results are based on 200 independent runs. In every run, N = 200 training

observations for Models 1 and 2 (100 for each group), and a test sample of 50 observations from

each group were generated. For Models 3 and 4, N = 400 training observations are generated

(100 for each subgroup). Tables 2 to 5 show the misclassification rates for the test samples. Some

curves obtained with each model are presented in Figure 6.

For the comparison, the FM, RP and hM depths were employed using the original trajectories

and/or the derivatives of every curve, which were computed using splines. The MBD depth

was not considered here because of its similarity with FM depth. The different depth options are

denoted as in Section 4 except that the first derivative (.1 ) is used instead of the second derivative.
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Proceeding as in Section 4, the R is computed to select the best option from among the different

depths (first row of Table 3). The overall winner is hM.w suggesting that the combined information

of the curves and the first derivative is better than using only one of the components. This is a

quite difficult example for a classification task as can be deduced from the relative small distance

correlations obtained. Note that here k = 1.1 whereas in Cuevas et al. (2007) it was k = 1.2 which

makes the classification task easier due to a clearer separation of the two groups.

The list of classifiers includes DD1, DD2 and DD3 as classical classifiers and also LDA, QDA,

kNN, NP, GLM and GAM. The other possible methods were not tested here due to their com-

plexity (ANN, SVM) or because they were outperformed by other methods (tree). Note that the

procedures DDi, i = 1, 2, 3 can not be used with the .m option.

FM.0 FM.1 FM.w FM.p FM.m RP.0 RP.1 RP.w RP.p RP.m hM.0 hM.1 hM.w hM.p hM.m

R(Y,d) 0.23 0.28 0.34 0.32 0.32 0.34 0.25 0.36 0.36 0.38 0.38 0.42 0.50 0.49 0.47

DD1 27.20 22.20 20.40 21.30 24.70 18.20 18.50 18.30 20.30 17.40 16.40 16.30

DD2 25.00 21.10 18.80 19.60 24.50 16.90 17.80 17.70 18.80 15.70 13.60 13.80

DD3 25.20 21.10 19.10 19.60 24.00 17.10 18.20 17.80 18.90 16.10 13.90 14.10

LDA 24.20 20.70 18.70 19.70 18.70 24.40 17.20 17.90 17.90 16.50 18.40 15.00 12.80 13.00 13.00

QDA 24.50 21.00 18.60 19.70 18.80 25.00 16.80 18.10 17.90 17.20 18.50 15.20 12.70 12.80 13.30

kNN 25.20 22.00 19.20 20.30 19.20 24.60 17.40 18.40 17.90 17.20 18.80 15.90 13.70 13.80 13.70

NP 24.80 21.70 19.30 20.00 18.60 24.90 17.30 18.20 17.80 17.20 18.40 15.80 13.80 13.60 13.40

GLM 24.10 20.60 18.60 19.40 18.70 24.20 16.60 17.50 17.50 16.20 18.40 15.10 12.80 13.00 13.00

GAM 24.70 20.90 18.20 19.40 19.00 23.80 16.80 17.40 17.80 16.60 18.40 15.40 13.30 13.30 13.70

Table 3: Distance correlation and misclassification prediction errors for Model 1 (mean of 200

runs)

The complete results for Model 1 are summarized in Table 3 where the conjectures observed

with the distance correlation are confirmed. The best results are obtained for hM.w with small

differences between classifiers, except for DD1. In this case, the linear classifiers (QDA, LDA,

GLM) seem to work slightly better than the others (the minima of all columns are obtained in

one of these three rows). This means that the simplest linear models are able to perform the

classification task successfully.
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FM.0 FM.1 FM.w FM.p FM.m RP.0 RP.1 RP.w RP.p RP.m hM.0 hM.1 hM.w hM.p hM.m

R(Y,d) 0.24 0.16 0.22 0.32 0.26 0.28 0.13 0.24 0.32 0.24 0.48 0.34 0.50 0.44 0.48

DD1 32.50 26.90 27.30 16.70 32.30 21.20 22.00 21.50 14.00 14.50 10.30 11.10

DD2 22.70 27.40 22.80 16.70 20.10 20.10 16.30 16.00 11.30 14.80 9.60 10.80

DD3 22.90 27.40 22.90 16.90 20.50 20.20 16.80 15.90 11.60 14.80 9.70 11.00

LDA 22.00 26.30 21.90 16.40 17.60 21.20 19.70 16.70 16.50 14.80 12.30 13.90 9.30 10.40 9.40

QDA 22.30 26.40 21.90 16.30 18.20 20.60 19.50 16.10 16.20 15.20 11.90 13.60 8.90 10.10 9.10

kNN 23.60 28.00 23.50 17.30 19.60 19.90 20.50 16.60 16.30 16.70 12.10 14.80 9.40 10.60 10.20

NP 23.50 27.50 23.30 17.50 19.20 20.50 20.80 17.00 16.80 16.20 12.00 14.70 9.40 10.90 10.10

GLM 22.10 26.20 22.20 16.00 17.80 19.30 19.40 15.60 15.50 14.50 11.70 13.60 8.80 10.20 9.00

GAM 22.90 26.50 22.40 16.60 18.90 19.30 19.90 16.10 15.50 15.00 11.00 13.90 9.10 10.30 9.50

Table 4: Distance correlation and misclassification errors for Model 2 (mean of 200 runs)

The second model (Table 4) is a difficult scenario for methods based on RP and FM depths as

can be deduced from the low values of the distance correlation. These methods work well when

the groups are homogeneous rather than being constituted of subgroups as in this case. The least

misclassification error is obtained by the hM.w–GLM (8.8%), although all classifiers based on

hM.w or hM.m have misclassification error rates under 10.2%.

The third model (Table 5) is even harder for RP and FM methods. In both cases, the use of the

first derivative is preferable to the use of the original curves or a weighted version of them. For

these methods, the best misclassification errors are obtained using the full model (FM.p–GAM

(21%) and RP.1–GAM (23.2%)). This is also true for the hM method but it consistently yields

lower misclassification errors. The best combinations are hM.w–QDA, hM.w–GAM, hM.m–QDA

and hM.m–GAM with only 15.1%.

Finally, the results for the fourth model (Table 6) are better than those for Model 3, supporting

the idea that homogeneous groups are easier to classify with RP and FM methods. Indeed, in

all cases, the weighted version improves the classification of each component alone. In our view,

this means that the two components have complementary pieces of the information needed for

classification. The best combinations for each depth are: FM.w–GLM, FM.m–GLM (16.2%),

RP.p–GLM (15.2%) and hM.p–GLM (12.1%). Note that, since we have four groups, the DDi,

i = 1, 2, 3, procedures can not be used here.
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FM.0 FM.1 FM.w FM.p FM.m RP.0 RP.1 RP.w RP.p RP.m hM.0 hM.1 hM.w hM.p hM.m

R(Y,d) 0.08 0.24 0.18 0.22 0.16 0.16 0.27 0.23 0.30 0.32 0.32 0.38 0.41 0.38 0.40

DD1 33.90 23.90 29.80 25.50 33.90 26.00 30.20 30.60 23.60 19.00 19.60 20.70

DD2 33.40 22.20 26.50 21.30 33.10 23.90 28.70 28.80 19.00 16.50 15.50 16.40

DD3 29.10 22.50 24.30 21.60 29.70 23.70 24.80 25.00 19.40 16.80 15.70 16.80

LDA 35.60 22.60 28.70 23.60 28.70 36.90 24.60 31.70 31.50 31.60 20.50 16.10 15.90 17.00 15.90

QDA 32.50 22.20 25.90 21.70 25.90 34.20 24.00 28.40 28.50 28.90 19.30 16.10 15.10 16.10 15.10

kNN 30.50 23.10 24.50 21.80 24.50 30.20 24.20 25.50 25.50 25.40 19.70 16.80 15.70 16.70 15.70

NP 30.60 22.60 24.80 21.50 24.80 30.40 23.50 25.80 25.60 25.60 19.50 16.50 15.40 16.50 15.40

GLM 35.70 22.60 28.70 23.40 28.70 36.90 25.00 31.70 31.80 31.90 20.30 16.30 15.60 16.70 15.60

GAM 29.60 21.90 24.20 21.00 24.20 30.50 23.20 25.20 25.40 25.30 18.90 16.30 15.10 16.10 15.10

Table 5: Distance correlation and misclassification errors for Model 3 (mean of 200 runs)

FM.0 FM.1 FM.w FM.p FM.m RP.0 RP.1 RP.w RP.p RP.m hM.0 hM.1 hM.w hM.p hM.m

R(Y,d) 0.60 0.47 0.65 0.65 0.63 0.60 0.56 0.67 0.69 0.66 0.64 0.58 0.69 0.68 0.68

LDA 21.00 27.30 16.30 17.10 16.30 23.30 19.30 15.90 15.90 16.00 17.60 17.60 13.00 12.70 13.00

QDA 21.00 28.20 17.50 18.90 17.50 24.10 20.10 16.60 16.50 16.80 17.90 17.80 12.80 12.90 12.80

kNN 23.60 32.80 19.30 19.80 19.30 24.90 22.20 17.90 18.00 18.20 18.50 20.50 14.10 14.20 14.10

NP 20.70 27.80 16.50 17.20 16.50 22.50 19.10 16.00 15.90 16.00 17.00 18.10 12.70 12.80 12.70

GLM 20.90 27.90 16.20 16.70 16.20 23.10 18.70 15.60 15.20 15.70 16.60 17.20 12.20 12.10 12.20

GAM 20.90 28.20 16.50 17.10 16.50 21.80 19.20 15.80 15.70 16.00 16.20 17.90 12.60 12.60 12.60

Table 6: Distance correlation and misclassification errors for Model 4 (mean of 200 runs)

5.1 Application to Real Data Sets.

We have applied our proposal to several well-known data sets found in the functional data analysis

literature. A nice review on functional classification can be seen in Báıllo et al. (2010). In the

following, we will briefly describe the data sets, the results found in the literature and our best

results using depths mimicking the original procedure.

• Berkeley Growth Study Data: The curves in this dataset correspond to the heights of 39

boys and 54 girls from age 1 to 18. It constitutes a classical example included in Ramsay

and Silverman (2005) and in the fda R-package.
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As a classification problem, this dataset was treated in Báıllo and Cuevas (2008), where

using a functional kNN procedure, a best cross-validation classification rate of 96.77% was

obtained. In our application, the best result is obtained by the combinations hM.0–LDA,

hM.0–QDA, hM.0–kNN with 97.8%.

• Phoneme: The phoneme dataset is also quite popular in the FDA community although its

origins are in the area of Statistical Learning (see Hastie et al. (1995)). The dataset has

2000 log-periodograms of 32ms duration corresponding to five different phonemes (sh, dcl,

iy, aa, ao).

It appeared as a functional classification problem in Ferraty and Vieu (2003). Randomly

splitting the data into training and test sample (250, 50 per class – 250, 50 per class,

respectively) and repeating the procedure 200 times, the best result achieved by the authors

was an 8.5% misclassification rate. Applying our proposals, the combination hM.m–LDA

misclassifies 7.2%.

This dataset was also used in Delaigle and Hall (2012) but was restricted to the use of the

first 50 discretization points and to the binary case using the two most difficult phonemes,

(aa, ao), obtaining a misclassification rate of 20% when N = 100. Our best result is 18.6%

obtained by hM.w–QDA although most hM procedures yield errors below 20%.

• MCO Data: These curves correspond to mitochondrial calcium overload (MCO), measured

every 10 seconds for an hour in isolated mouse cardiac cells. The data (two groups: control

and treatment) were used as functional data in Cuevas et al. (2004) for ANOVA testing and

the dataset is available in the fda.usc package.

This was analyzed as an FDA classification problem, was considered in Báıllo and Cuevas

(2008) where using a cross validation procedure, a best error rate of 11.23% was obtained.

Our best results are the combinations hM.1–DD1, hM.m–LDA, hM.m–QDA, hM.m–NP with

an error rate of 2.2%.

• Cell Cycle: The curves in this dataset are temporal gene expression measured every 7

minutes (18 observations per curve) of 90 genes involved in the yeast cell cycle. The data

were originally obtained by Spellman et al. (1998) and used in Leng and Müller (2006) and

Rincón Hidalgo and Ruiz Medina (2012) with the goal of classifying these genes into two
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groups. The first group has 44 elements related with G1 phase regulation. The remaining

46 genes make up the second group and are related to the S, S/G2, G2/M and M/G1

phases. The dataset has several missing observations which were imputed in this work using

a B-spline basis of 21 elements.

Both papers mentioned above obtain the same misclassification rate: 10% (9 misclassified

genes) but with different numbers of errors for each group. Our proposal achieves a 5.6%

rate with the combination hM.p–NP but almost all procedures based on hM.1 or hM.w yield

a misclassification rate of 8.9% or lower.

• Kalivas : This example comes from Kalivas (1997) and was used for a functional classification

problem in Delaigle and Hall (2012). The curves are near-infrared spectra of 100 wheat

samples from 1100 nm to 2500 nm in 2 nm intervals. Two groups are constructed using the

protein content of each sample, which is known in advance, using a binary threshold of 15%

that places 41 elements in the first group and 59 in the second.

Our best result for 200 random samples of size 50 was the combination FM.m–QDA with

a 3.7% misclassification error. This rate is quite far from the best in Delaigle and Hall

(2012) (CENTPC1 = 0.22%) using the centroid classifier but the latter requires projecting

in a specific direction that in this case corresponds to small variations on the subinterval

[1100, 1500]. So, any depth procedure based on the whole interval cannot achieve a better

result than a technique focused in the small interval that contains the relevant information

for the discrimination process.

6 Conclusions

In this paper we have presented a procedure that extends the DD-classifier proposed in Li et al.

(2012) and adapted it to the functional context in several ways:

• The first improvement is the ability of the new proposal to handle more than two groups

due to the flexibility of the new classifiers. In fact, the DDG classifier converts the data into

a multivariate dataset whose columns are constructed using depths and the new classifiers

are classical multivariate classifiers based on discrimination procedures (LDA, QDA) or

23



regression procedures (kNN, NP, GLM, GAM). More classifiers could be considered here

(such as SVM or neural networks) but, in our experience, there is no gain in prediction using

more complex classifiers. On the contrary, as the complexity of the classifier increases, there

is a tendency to overestimate in the estimation stage and consequently a loss of predictive

power. For instance, in our simulations, the GAM procedure is not always better than the

GLM although the latter is a particular case of the former.

• Aside from the change in the classifiers, several depth procedures can be taken into account

at the same time in order to improve the classification or to diagnose whether a depth

contains useful information for the classification process or not. For the diagnostic part, it

is recommended that the classifier be simple to analyze as, for instance, in the LDA or GLM

procedures.

• The DDG–classifier is especially interesting in a functional or high-dimensional framework

because it changes the dimension of the classification problem from large or infinite to G,

where G depends only on the number of groups under consideration and the number of

depths that the statistician decides to employ. For instance, if we have 3 groups in the data

and the method is using 2 different depths, the multivariate dimension of the DDG–classifier

is 6. Clearly, this is a more tractable dimension for the problem, but there are, in addition,

some options ways to reduce this number. In this paper, a review of functional data depths

is made by including modifications to summarize multivariate functional data (the data are

made up of vectors of functions) without increasing or even reducing the dimension of the

problem at hand.

In a multivariate setting, this might not be so advantageous because the dimension G is a

multiple of the number of groups and it could sometimes be greater than the dimension of

the original space. For instance, in the classical example of Fisher iris data, there are four

variables and three groups, so that using the DDG–classifier map in its most simple case can

be worked in dimension three. But we can also consider a univariate depth for each variable

and then the dimension G grows up to twelve.

• The functions needed to perform this procedure are freely available at CRAN in the fda.usc

package (Febrero-Bande and Oviedo de la Fuente (2012)) for versions higher than 1.2.0. The
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principal function is called classif.DD and contains all the options shown in this paper

related to depths and classifiers. Most figures in this paper are also regular outputs of this

function.

SUPPLEMENTAL MATERIALS

Supplemental Code Rar compressed file containing the code for generating the plots and results

in the paper (paper.code.R) along with the code for the simulation study (file simul.xxx.R)

and the code for applications to real data sets (classif.xxxx.R). The file also contains a

directory with the data that cannot be obtained from R-packages. (rar file)

R-package fda.usc R-package fda.usc (1.2.1) used to perform the procedures shown in the paper.

(GNU zipped tar file)
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Figure 4: From left to right, top to bottom DD–plot using LDA, QDA, kNN, GLM, GAM and

tree classifiers to the DD-plot in Figure 2.b. The one-dimensional depth in all cases is the Tukey

depth.
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Figure 5: Example of GLM classifier using the spectrometric curves of the Tecator data set and

its second derivative.
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Figure 6: A sample of 40 functions for every simulation model along with the means of each

sub-group (m1’s (black lines) and m2’s (red line)).
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