There is a newer version of this record available.

Software Open Access

drojasd/GSUA-CSB: GSUA-CSB v1.0


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20211125031433.0</controlfield>
  <controlfield tag="001">3383316</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1899497</subfield>
    <subfield code="z">md5:0ceb9dd3eda66216c0edcc88e2d4f4a7</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-01</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">drojasd</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">drojasd/GSUA-CSB: GSUA-CSB v1.0</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Open)</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Global Sensitivity and Uncertainty Analysis - Uncertainty Confidence Interval (GSUA-UCI) Toolbox is a product developed by Universidad EAFIT for command-line mathematical model validation in both of Simulink or Symbolic Math Toolbox environment . At present time, the toolbox allows to perform the following functions: To apply and visualize several variance-based sensitivity (SA) and uncertainty (UA) analysis, to estimate model parameters (PE) and to estimate confidence subcontour box (CSB) for estimated parameters. This toolbox is based on the previous work of Carlos Mario Vélez: GSUA of dynamical systems using variance-based methods.&lt;/p&gt;
&lt;p&gt;Sensitivity indices estimators implemented in this toolbox are based on the following works:
[1]: Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. (2010). Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Computer Physics Communications, 181(2):259–270.
[2]: Xiao, S., Lu, Z., and Wang, P. (2018). Multivariate global sensitivity analysis based on distance components decomposition. Risk Analysis, 38(12):2703–2721.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isSupplementTo</subfield>
    <subfield code="a"></subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3383315</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3383316</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
All versions This version
Views 14368
Downloads 3315
Data volume 79.4 MB28.5 MB
Unique views 13162
Unique downloads 2612


Cite as