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ABSTRACT 

Automation in CFRP production poses multiple challenges. The material at hand is very un-

isotropic and deformable, leading to various difficulties in handling. We believe that visual 

inspection and quality control are key technologies to improve automation in CFRP 

production. In this paper, we point out possible ways to exploit modern machine learning 

methods in the context of CFRP quality control. Taking the example of AFP, we show how to 

transform prior knowledge about the production process into a probabilistic model. By 

drawing samples from this model, we demonstrate how to infer hidden variables of the 

process efficiently. We show how to use the methodology to perform inline defect detection 

and to reconstruct global process parameters. We present results for artificial and selected 

real AFP monitoring data acquired during inline process monitoring.  

1. INTRODUCTION 

A lot of effort is put into making CFRP manufacturing more efficient. Nevertheless, the level 

of automation still is relatively low, compared to other branches of industry. We believe that 

this relates to the fact that handling of carbon fiber material is quite challenging. Flexibility 

and high anisotropy of fibrous materials results in the need for sophisticated sensor 

technology.  

Relatively little work has been published related to AFP monitoring systems. Technologies 

used so far include thermographic imaging (1., 2.) and laser triangulation (3.) Mostly, this 

work focuses on the hardware components inspection systems. For automated evaluation of 

sensor data, relatively simple algorithms based on filtering were proposed. In the present 

work, we propose the use of machine learning to fill this gap. Here, we stick to the use of 

laser triangulation as sensor technology. However, the data processing approach is extensible 

to other inspection technologies like thermography. 

We argue that it is necessary to introduce powerful data processing methods in order to 

achieve high defect detection rates for systems that perform automated quality control. The 

data generated by many sensor systems include uncertainties that are subtle and need careful 

analysis to perform the correct interpretation. The data processing approach that we propose 

build upon modern machine learning methods. We deploy a probabilistic model that 

describes the observed data in combination with a deep neural network to perform inference. 

Our work is based on recent work (4.) We extend this method by adding the possibility to 

infer global parameters in addition to performing local surface characterization. 

There are currently two important trends in machine learning. The first is deep artificial 

neural networks. Such networks have shown tremendous performance in many problem 

domains, which were considered too complex before. The second big trend in machine vision 

relates to probabilistic models. Probabilistic concepts where not considered fruitful by many 
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researchers in the early days of artificial intelligence. Nowadays, however, probability is 

widely accepted as the right language to describe many soft problems such as distinguishing 

between different types of defects showing up in sensor data. 

Neural networks are usually very fast when doing inference. Once the network is fully trained 

(which may take some time), it is in general very fast to apply the network to a new sample. 

On the other hand, it is very hard to integrate domain expert knowledge into a neural 

network. The network somehow acts as a black box. Probabilistic (graphical) models on the 

other hand provide the possibility to explicitly model entities (i.e. random variables) and their 

relationships (e.g. conditional probabilities in Bayesian Networks) of some system or process. 

The drawback of such models is that typically inference is computationally very expensive. 

For non-trivial models no algorithms for fast inference are available.  

In this work we combine a Bayesian Network for data modelling with a deep neural network 

for fast inference. This approach is sometimes referred to as “analysis-by-synthesis” in the 

literature. It has been used in different fields in the past. To perform face recognition, a 

system based on renderings of photorealistic images was proposed (5.) Similar ideas were 

used to develop a system for human hand localization and 3d reconstruction (6.) Another 

interesting application domain is autonomous driving where generative models were 

deployed in a similar way (7., 8.) 

We extend an existing method (4.) to perform not only segmentation, but to also infer global 

parameters of the model that generates the data. We propose a neural network architecture 

that is able to predict tow width at a high accuracy while segmentation performance does not 

suffer. Essentially, the network that we propose is a multi-task neural network (9.) 

1. AFP SENSOR DATA 

1.1 Inline Laser Triangulation Sensor 

Input to our data processing system comes from a laser triangulation sensor integrated into an 

AFP lay-up head (Figure 1). The system has a field of view of approximately 120 mm width 

and 53 mm height (i.e. perpendicular to the tangent plane of the surface at lay-up). 

The sensor principle is laser triangulation. A laser line is projected onto the tows right after 

they are placed by the lay-up head. A camera records images and the laser line is extracted. 

The result is a height profile of the laser line projected onto the surface for each acquisition. 

Based on the relative alignment of laser plane and camera, the detected profiles may be 

converted to a 3d point cloud relative to the sensor. However, we propose not to operate on 

3d point clouds to perform data analysis. Instead, we accumulate multiple profiles to create a 

2d height map of the surface.  

In general, we are interested in detection and localization of different defects. We target at 

gaps (larger distances between neighboring tows), overlaps (regions where neighboring tows 

overlap), and fuzz balls (small carbon fibers that accumulate and accidentally fall onto the 

surface during lay-up). Besides these three types of defects, we define the remaining regions 

in the recorded height maps as “regular tow”. 
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Figure 1: Laser-triangulation sensor on AFP lay-up head. 

 

1.2 Probabilistic Data Model 

Our implementation of the data generating model largely follows that of (4.) We model 

individual entities as probability variables in a probabilistic graphical model. Relationships 

are modelled as conditional probabilities between these variables. A simplified representation 

of our model is outlined in Figure 2. We assume that the tow width T, which will be observed 

by the inspection system, is independent of other random variables in the model. Therefore, T 

has no incoming arrows. However, T influences other variables Z. While there actually is a 

large number of hidden variables with different dependencies, we simply represent these by a 

single node Z. Z can be interpreted as the actual configuration of the inspected carbon fiber 

surface. Z directly influences the labels Y that are assigned to individual pixels. Z also 

influences the actual height values X as observed by the laser triangulation system. The gray 

background of node X indicates that this is an observed variable. 

The beauty of a probabilistic graphical model is, that it nicely shows probabilistic 

relationships in an intuitive way. The directed nature of Bayesian Networks makes it easy to 

understand the “forward” reasoning in that model. Following the arrows in the model (which 

represent conditional probability distributions), it is easily possible to sample from that 

model. However, it is in general computationally very hard to do inference in the backward 

direction, i.e. determine probabilities for hidden variables given the observed ones. This is 

especially true when conditional probability distributions are very complex. 
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Figure 2: Probabilistic Graphical Model for data generation (simplified). The random 

variables shown here are a global parameter for tow width T, a hidden state that 

represents the real configuration of the surface Z, observed X and unobserved Y, which 

acts as ground-truth information during training. 

In this work we consider the problem of finding the most likely configuration of hidden 

variables given the observed variables. The observations we make are the height maps 

coming from the laser triangulation system. The hidden variables we are interested in are the 

hidden tow width T together with the vector of pixel-wise labels Y. Y indicates whether the 

respective pixels represent regular tow, gap, overlap, or fuzz ball. In the next section we 

outline the neural network that is used to perform inference of T and Y in combination. 

2. INFERENCE WITH DEEP NEURAL NETWORK 

As outlined in the previous chapter, we are interested in finding a reasonable configuration of 

hidden parameters that explains the observed sensor data best. To do this job, we employ a 

deep neural network.  

2.1 Network architecture 

The network architecture is based on an encoder-decoder layout. A height map acquired by 

the sensor system is the input to the neural network. The encoder part of the network consists 

of multiple encoding layers, each performing a reduction in spatial resolution while 

increasing the number of features. After the encoding stages, two separate paths are followed. 

These are outlined in the following. 

The decoding path brings the spatial resolution back to the original input resolution. In order 

not to lose spatial accuracy, activations are forwarded from the encoding layers on the same 

level. Each encoding layer consists of the following operations: max pooling, convolution, 

padding, relu, convolution, padding and relu. Each decoding layer consists of: upscaling, 

padding, concatenation, convolution, padding, relu, convolution, padding, and relu. For more 

details we refer to (4.) The output of the encoding-decoding path in the network delivers a 

pixel-wise prediction of labels. 

Three additional pairs of convolutions followed by relu realize the second path that follow the 

encoding stages. The final convolution reduces the number of features to two. The 

interpretation of these two low-resolution feature maps is such that one of them represents the 

prediction of tow width. The second one represents the confidentiality of the correctness of 

the corresponding tow width prediction.  
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All parameters of the network are contained in convolutions. No fully connected layers are 

used. This provides the advantage that the neural network adapts to different input sizes.  

 

Figure 3: Multi-task neural network for inference. A probabilistic graphical model 

(PGM) provides network input and ground truth. The data takes two paths through the 

network: for segmentation and for prediction of tow width. 

2.2 Loss function 

Each of the two data processing paths through the neural network terminate in a separate loss 

function: Segmentation loss and tow width loss. The overall loss used for neural network 

training is the averaged sum of both losses. In the following, we outline segmentation and 

tow width loss in detail. 

The segmentation loss describes how well the network predicts the correct label (“gap”, 

“overlap”, “regular tow”, “fuzz ball”) for all pixels. The network outputs the predicted labels 

in four channels, one for each possible label. The output of a single pixel is converted to a 

probability distribution via the softmax function first. Then, the cross entropy with the ground 

truth is calculated for each pixel. The average cross entropy over all pixels represents the 

final segmentation loss. 

The loss for prediction of tow width is used to assess how well the network predicts the 

average tow width that shows up in the data. Because the layout of the network was chosen to 

be fully convolutional (i.e. no fully connected layers), the spatial size of the map that 

represent tow width depends on the spatial size of the input to the network. Therefore, we 

need to convert the spatially distributed tow width predictions to a single value. We define 

the first output feature map w as the actual tow width prediction. The second feature map c is 

defined as the expected error for the corresponding entry in w, i.e. ci,j describes the predicted 
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absolute error of the estimation wi, j of tow width. i and j denote the spatial position of the 

prediction within the feature maps. The tow width loss is defined as: 

𝐿𝑡𝑤 =  
1

𝑁
∑(𝜖𝑖,𝑗 ∗  𝜆 + 𝜂𝑖,𝑗)

𝑖,𝑗

 

with 

𝜖𝑖,𝑗 =  |𝑤𝑖,𝑗 − 𝑤𝑔𝑡| 

and 

𝜂𝑖,𝑗 = |𝑐𝑖,𝑗 − 𝜖𝑖,𝑗| 

where N is the total number of pixels. The parameter λ describes the relative weight of 

predicted tow width and its error. We use λ = 3, i.e. the predicted tow width is three times 

more important than the corresponding predicted absolute error. 

3. RESULTS 

We present results on purely artificial data and selected data from a real sensor system. Both 

types of evaluation are based on the same neural network trained exclusively on a set of 5000 

artificial data samples. Two examples of these with different tow width (44.2 and 112.4 

pixels) are shown in Figure 4. 

 

 

Figure 4: Two examples of artificially generated data sets: normalized height map (left) 

and different labels for image regions (right). Colors represent regular tow (green), gap 

(red), overlap(blue), and fuzzball (yellow). The example on top is based on tow width of 

44.2 pixels. The bottom example is based on tow width of 112.4 pixels. 
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3.1 Evaluation for artificial test data 

We generate 100 separate test samples for evaluation. The generative model is the same as 

that to generate the 5000 samples for neural network training. However, a different random 

seed is chosen for the test samples. Therefore, the test samples are different although drawn 

from the same distribution. 

We feed the test samples to the neural network and record the predicted tow width values. 

We also record the ground truth of the tow width as used in the generative model. Figure 5 

shows the ground truth values on the horizontal axis. The vertical axis shows the output of 

the neural network. There is a good correlation between the values. The mean absolute error 

of the predictions for all 100 test samples is 0.77 pixel. The maximum absolute error is 7.02 

pixel. 

 

Figure 5: Inference of tow width in pixels. The horizontal axis shows values of the true 

parameter T. The vertical axis represents predictions as output of the neural network. 

In parallel to the accuracy for predictions of the global tow width, we evaluate segmentation 

performance. Table 1 shows this result as a confusion matrix. Across all 100 test samples, 

99.62% of pixels were correctly classified (diagonal elements of the confusion matrix). 

  Ground truth  

  Gap Tow Overlap Fuzzball Σ 

N
N

 p
re

d
ic

ti
o
n

 

Gap 8.08 0.04 0.000000 0.00 8.12 

Tow 0.06 80.80 0.10 0.02 80.97 

Overlap 0.00 0.12 5.909983 0.00 6.03 

Fuzzball 0.00 0.04 0.004167 4.84 4.88 

Σ 8.14 90.98 6.01 4.86 100.00 

Table 1: Confusion matrix for over all 100 artificial test samples. The numbers 

represent the percentage of pixels. Correctly classified pixels show up in the diagonal of 

the confusion matrix. 
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Figure 6 shows an example for the segmentation output calculated by the neural network. 

Only very few pixels are given wrong labels.  

     

Figure 6: Example for segmentation calculated by the neural network on unseen 

artificial data. Normalized input range image (left), ground truth segmentation (center), 

and neural network output (right). Color coding is the same as in Figure 4. 

3.2 Evaluation on real data 

We evaluate our method also on a single sample of real sensor data. Other than for artificial 

data, ground truth cannot be derived from a generative model. Instead, the ground truth for 

segmentation comes from manual labelling. Figure 7 shows the segmentation result. 

Compared to the manual labelling, the neural network predicts labels for 95.4% of pixels 

correctly. 

The ground truth for tow width is manually defined as 109 pixels. Three horizontal lines with 

this length are drawn at different locations over the top image in Figure 7. The prediction of 

the neural network is 112.7 pixel for this input data. This corresponds to an error of 3.7 pixel, 

i.e. 3.3% of the ground truth value. 

 

 

 

Figure 7: Example for segmentation calculated by the neural network on unseen 

artificial data. Normalized input range image (left), ground truth segmentation (center), 

and neural network output (right). Color coding is the same as in Figure 4. 
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4. CONCLUSIONS 

In this work, we extend the concept of analysis-by-synthesis to data processing for inline 

monitoring of AFP processes. We model data that is acquired by the monitoring system in an 

explicit and probabilistic way. A neural network infers hidden variables from observed 

values. Hidden variables can be of different type: local (i.e. per-pixel) in case of segmentation 

or global parameters (e.g. tow width).  

The fact that a probabilistic model generates complete data samples makes tedious manual 

labelling of training data obsolete. Changes in the data (e.g. due to modifications of the 

sensor hardware) would usually require tedious acquisition and labelling of new data. With 

the proposed method it is only necessary to adapt the generative model in order to adapt the 

system. 

Although the method is promising and has several advantages, there is one critical aspect. In 

general, there is some discrepancy between the real process and the probabilistic model. 

Interesting future research questions relate to how this discrepancy can be understood, 

quantified, and minimized.  
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