Conference paper Open Access

Machine Learning for CFRP Quality Control

Sebastian Zambal; Christoph Heindl; Christian Eitzinger

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2019-09-30</subfield>
  <controlfield tag="005">20200120174119.0</controlfield>
  <controlfield tag="001">3381930</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17-19 September, 2019</subfield>
    <subfield code="g">SAMPE</subfield>
    <subfield code="p">2</subfield>
    <subfield code="a">Conference of the Society for the Advancement of Material and Process Engineering Europe</subfield>
    <subfield code="c">Nantes (France)</subfield>
    <subfield code="n">Industrial Innovation</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="a">Christoph Heindl</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="a">Christian Eitzinger</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">665806</subfield>
    <subfield code="z">md5:8dce1131b54dffd25b5625e99067e4d2</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u"></subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-18</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="0">(orcid)0000-0001-9235-0590</subfield>
    <subfield code="a">Sebastian Zambal</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning for CFRP Quality Control</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">721362</subfield>
    <subfield code="a">Zero-defect manufacturing of composite parts in the aerospace industry</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt; - Automation in CFRP production poses multiple challenges. The material at hand is very un-isotropic and deformable, leading to various difficulties in handling. We believe that visual inspection and quality control are key technologies to improve automation in CFRP production. In this paper, we point out possible ways to exploit modern machine learning methods in the context of CFRP quality control. Taking the example of AFP, we show how to transform prior knowledge about the production process into a probabilistic model. By drawing samples from this model, we demonstrate how to infer hidden variables of the process efficiently. We show how to use the methodology to perform inline defect detection and to reconstruct global process parameters. We present results for artificial and selected real AFP monitoring data acquired during inline process monitoring.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3381929</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3381930</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 8585
Downloads 4949
Data volume 32.6 MB32.6 MB
Unique views 7979
Unique downloads 4747


Cite as