Conference paper Open Access

Machine Learning for CFRP Quality Control

Sebastian Zambal; Christoph Heindl; Christian Eitzinger


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3381930">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3381930</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3381930"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9235-0590">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0001-9235-0590</dct:identifier>
        <foaf:name>Sebastian Zambal</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>PROFACTOR GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Christoph Heindl</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>PROFACTOR GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Christian Eitzinger</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>PROFACTOR GmbH</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Machine Learning for CFRP Quality Control</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/721362/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-09-18</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3381930"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3381930</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3381929"/>
    <dct:description>&lt;p&gt;&lt;strong&gt;Abstract&lt;/strong&gt; - Automation in CFRP production poses multiple challenges. The material at hand is very un-isotropic and deformable, leading to various difficulties in handling. We believe that visual inspection and quality control are key technologies to improve automation in CFRP production. In this paper, we point out possible ways to exploit modern machine learning methods in the context of CFRP quality control. Taking the example of AFP, we show how to transform prior knowledge about the production process into a probabilistic model. By drawing samples from this model, we demonstrate how to infer hidden variables of the process efficiently. We show how to use the methodology to perform inline defect detection and to reconstruct global process parameters. We present results for artificial and selected real AFP monitoring data acquired during inline process monitoring.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3381930"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.3381930</dcat:accessURL>
        <dcat:byteSize>665806</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3381930/files/008_sampe2019_zambal.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/721362/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">721362</dct:identifier>
    <dct:title>Zero-defect manufacturing of composite parts in the aerospace industry</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
73
41
views
downloads
All versions This version
Views 7373
Downloads 4141
Data volume 27.3 MB27.3 MB
Unique views 6767
Unique downloads 3939

Share

Cite as