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Introduction
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What is score calibration?

• Calibration: Answers the question “What do my scores mean?” by empirically
determining function from score to expected value of some outcome statistic

• Inherently about groups (cases with the same score)
• Case outcome is binary (e.g. Good, Bad)
• Outcome statistic is some function of binary outcomes of a group of cases
(e.g. Pr(Bad|score) or logit(Pr(Good|score)))

• Result of calibration is a function from score to outcome statistic
• Fitting a function to the data (i.e. curve fitting)
• Typically, the function is approximately linear from score to log-odds

• Scaling: Transform group outcome statistic to a desired scale
• e.g. 1:1 odds 7→ zero points; double odds 7→ ∆ +100 points
• Think of converting temperature from Fahrenheit to Celsius
• Calibration is always on some scale, maybe not the one you want
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Calibration parameters

Calibration depends on:

• Substantive parameters

• Score definition (function from case attributes to a number)
• Number is commonly integer, may be real

• Population of cases
• Outcome definition

• Technical parameters of calibration function estimation

• Curve fitting technique
• Fitting technique tuning parameters
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How is the calibration function used?

• Operational process management

• Set decision thresholds
• Make loss predictions

• Technical diagnosis of the scoring model (my focus)

• For a well-behaved scoring model, the score to log-odds function is generally quite
linear (by definition)

• Nonlinearity indicates there is possibly a problem
• What is the problem? (shape of nonlinearity - not absolutely diagnostic)
• Does the problem matter? (size of nonlinearity)
• How to fix the problem? (“fix” may be a work-around)
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Calibration function zoo

Some calibration function patterns that may be encountered:
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Linear Change of slope Extremes flat Extremes reversed

Locally flat Locally reversed Spike
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Typical approaches to calibration function estimation

• Logistic regression from score to outcome, over cases
• glm(outcome == ”Good” ~ score, family=binomial)
• Estimated function forced to be linear

• Unless you use poly(score) - but there are better ways
• Blind to any nonlinearities

• Score bands
• Group scores into bands; calculate outcome statistic for each band
• Calibration function is a step-function
• Doesn’t assume any relationship between neighbouring bands

• Can model any relationship (coarsely - because of band widths)
• Local patterns may be hidden by bands (because of band widths)
• Doesn’t make efficient use of data (doesn’t use score ordering)

• Typically small number of observations per band
• Large variance of estimates obscures patterns 7



Score band approach

Simulated data with linear score to log-odds relationship (n = 2,000; 7% Bad; 10 bands)

score

lo
g−

od
ds

(o
ut

co
m

e)

outcome

Good

Bad

8



scorecal
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scorecal objectives

scorecal: An R package for score calibration

Be a better microscope for examining deviations from linearity in calibration functions

Issues to be addressed:

• Use data efficiently (assume continuity and smoothness)
• Relative magnitude of linear and nonlinear components
• Common scores
• Sparsity of cases in extreme tails
• Spike deviations
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Use data efficiently - issue & approach

• Score band approach does not make efficient use of data because it assumes:

• No relationship between neighbouring bands
• No significance to ordering of scores within bands

• Expect neighbouring scores to have similar outcome statistics
(continuity of scores and smoothness of calibration curve)

• Use smoothing spline or local regression models
• Cases “borrow strength” from their neighbours (like having a moving-window estimator)
• The effective number of cases used per score value is higher, giving narrower
confidence intervals

• But, outcome statistic estimates at neighbouring point values are correlated (which
follows from assuming smoothness)
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Use data efficiently - example

The same simulated data (95% confidence intervals)
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Relative magnitude of linear and nonlinear components - issue & approach

• Global linear trend is expected pattern
• Global linear trend generally much stronger than nonlinearities

• Nonlinearities are harder to see when combined with the strong linear component

• Decompose calibration function into linear and nonlinear components

• Fit linear model and use as offset in nonlinear models
• Regularisation of nonlinear component makes the linear component the default
pattern when data is sparse (similar effect to a Bayesian prior)

• Display nonlinear components separately
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Relative magnitude of linear and nonlinear components - example
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Common scores - issue & approach

For discrete scores, some score values are very common (occur on a large fraction of
cases), e.g. bureau scores for New-to-Bureau cases

• For moving-window estimators with window width set at fixed fraction of cases,
the fraction of cases on a common score may exceed the window width

• No variance of the predictor (score) within the window; regression fails

• For smoothing-spline estimators, can reduce the effective number of score values
• Use jittering (add small random noise) to break tied scores

• Jittering magnitude chosen to preserve order of scores
• (Mostly) does no harm if using a smoothing-spline estimator

• Average the outcome estimates for all the jittered scores derived from the same
unjittered score (i.e. transform the result back to the unjittered scores)
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Common scores - example

Histograms of unjittered and jittered simulated data for a small range of scores
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Sparsity of cases in extreme tails - issue

Distributions of scores tend to be skewed and heavy-tailed

• Cases are sparse in the extreme tails
• Confidence interval of fitted calibration curve may be very wide in tails

• May include positive and negative slopes

• Pattern is ill-defined in tails (needs stronger assumptions to extract the pattern)
• Extreme tails have small fraction of cases

• Generally not practically important
• But, tend to be visually dominant

• Can cause technical problems
• May be very few cases between smoothing spline knots
• May be only one outcome class between smoothing spline knots
• Case density may vary strongly within local regression window

• Pattern at dense end of window may dominate pattern at sparse end
17



Sparsity of cases in extreme tails - approach

• For nonlinear smooth fit, transform jittered score to normal density first

• Compresses heavy tails; expands light tails
• Estimate calibration curve then inverse transform back to original score scale
• Transform is to normal density rather than uniform, because uniform is too aggressive

• Effect of density transform is to increase smoothing where tails are heavy and
decrease smoothing where tails are light

• Smoothing is effectively low-pass filtering
• Compression of tails by transformation shifts frequencies of patterns up

• Higher frequencies are attenuated more by the smoothing
• Inverse transformation back to original scores shifts frequencies down again

• Expansion of tails by transformation does the converse
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Sparsity of cases in extreme tails - example - nonlinear smooth

The same simulated data (nonlinear components; 95% confidence intervals)
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Sparsity of cases in extreme tails - example - total curve

The same simulated data (combined components; 95% confidence intervals)
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Spike deviations - issue

• A specific score can have an outcome probability very different from neighbours

• Interpretable as the cases in the spike having the wrong score
• Possibly due to score calculation error
• Possibly due to applying scorecard to a different population

• Difficult to detect unless the score is a common score
• Difficult to detect in a continuous scorecard because spikes are spread
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Spike deviations - issue with smoothing approach

• Spike deviations break assumption of smoothness
• Analysis developed so far hides spikes
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Spike deviations - approach

Approach: Model spikes with an indicator variable for each spike score

• Issue: To find the spikes we need an indicator variable for each unique score

• Ideally, fit smooth and select spikes simultaneously with regularised regression
• This is possible, but I haven’t done it yet

• Current approach:

• Pre-filter potential spikes by frequency (say > 1% cases)
• Use lasso regression to select spikes with smooth as offset
• Re-estimate smooth with selected spikes as added predictors
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Spike deviations - example data

New simulated data with nonlinear score to log-odds relationship and a spike deviation
(n = 20,000; n_spike = 1,000; 10% Bad; 10 bands)
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Spike deviations - example results

Compare smoothed nonlinear components estimated with and without spike term
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Conclusions

• Calibration curves can be usefully decomposed into linear, smooth nonlinear, and
spike components

• The decomposition can be automated reasonably well

• Everything breaks under some circumstances

• The method is a work in progress

• All the R code for this presentation is publicly available
• The R package will soon be publicly available (very alpha)
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Meta conclusions

Content of analysis - simple stuff can be interesting

• Useful inferences can be drawn from comparatively restricted evidence
• Apparently simple problems can be full of subtleties

Tools for analysis - openness and reproducibility are important

• Reproducible computational research

• Open source tools
• Open source research
• Tools to simplify reproducibility
• Workflows for reproducibility
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Resources

This presentation is implemented as an executable R notebook, which is publicly
accessible on GitHub at: github.com/rgayler/scorecal_CSCC_2019

https://doi.org/10.5281/zenodo.3381631

This presentation is licensed under a Creative Commons Attribution 4.0 International License

The scorecal R package will be publicly accessible on GitHub at:
github.com/rgayler/scorecal
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