Conference paper Open Access

Technical Debt Quantification through Metrics: An Industrial Validation

Angeliki-Agathi Tsintzira; Areti Ampatzoglou; Oliviu Matei; Apostolos Ampatzoglou; Alexander Chatzigeorgiou; Robert Heb


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">technical debt, industrial, case study, metrics</subfield>
  </datafield>
  <controlfield tag="005">20200120170506.0</controlfield>
  <controlfield tag="001">3381247</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</subfield>
    <subfield code="a">Areti Ampatzoglou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Holisun SLR, Baia Mare, Romania</subfield>
    <subfield code="a">Oliviu Matei</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</subfield>
    <subfield code="a">Apostolos Ampatzoglou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</subfield>
    <subfield code="a">Alexander Chatzigeorgiou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Holisun SLR, Baia Mare, Romania</subfield>
    <subfield code="a">Robert Heb</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">573769</subfield>
    <subfield code="z">md5:0ed2809a88d8a8e03837abea396dd939</subfield>
    <subfield code="u">https://zenodo.org/record/3381247/files/tsintzira.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-05-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3381247</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</subfield>
    <subfield code="a">Angeliki-Agathi Tsintzira</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Technical Debt Quantification through Metrics: An Industrial Validation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780572</subfield>
    <subfield code="a">Software Development toolKit for Energy optimization and technical Debt elimination</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Technical Debt is a software engineering metaphor that refers to the intentional or unintentional production of software at a lower quality, to achieve business goals (e.g., shorten time to market). Nevertheless, similarly to financial debt, technical debt does not come without negative consequences. The accumulation of technical debt leads to additional maintenance. The technical debt metaphor is built around three major concepts: principal, interest, and interest probability. The quantification of these notions is the first step towards the efficient management of technical debt, in the sense that &amp;ldquo;you cannot control what you cannot measure&amp;rdquo;. In this paper, we employ an established method for quantifying technical debt, namely FITTED, to measure the technical debt of an industrial software product, and contrast it to the perception of the software engineers. The main contribution of this work is the validation of FITTED in an industrial setting, and particularly in the Embedded Low Power Systems domain. The results of the study suggest that FITTED is able of accurately ranking software components, with respect to their principal, interest, and interest probability.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3381246</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3381247</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
110
69
views
downloads
All versions This version
Views 110110
Downloads 6969
Data volume 39.6 MB39.6 MB
Unique views 9292
Unique downloads 6262

Share

Cite as