Conference paper Open Access

Technical Debt Quantification through Metrics: An Industrial Validation

Angeliki-Agathi Tsintzira; Areti Ampatzoglou; Oliviu Matei; Apostolos Ampatzoglou; Alexander Chatzigeorgiou; Robert Heb


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3381247</identifier>
  <creators>
    <creator>
      <creatorName>Angeliki-Agathi Tsintzira</creatorName>
      <affiliation>Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Areti Ampatzoglou</creatorName>
      <affiliation>Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Oliviu Matei</creatorName>
      <affiliation>Holisun SLR, Baia Mare, Romania</affiliation>
    </creator>
    <creator>
      <creatorName>Apostolos Ampatzoglou</creatorName>
      <affiliation>Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Alexander Chatzigeorgiou</creatorName>
      <affiliation>Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Robert Heb</creatorName>
      <affiliation>Holisun SLR, Baia Mare, Romania</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Technical Debt Quantification through Metrics: An Industrial Validation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>technical debt, industrial, case study, metrics</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-05-30</date>
  </dates>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3381247</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3381246</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Technical Debt is a software engineering metaphor that refers to the intentional or unintentional production of software at a lower quality, to achieve business goals (e.g., shorten time to market). Nevertheless, similarly to financial debt, technical debt does not come without negative consequences. The accumulation of technical debt leads to additional maintenance. The technical debt metaphor is built around three major concepts: principal, interest, and interest probability. The quantification of these notions is the first step towards the efficient management of technical debt, in the sense that &amp;ldquo;you cannot control what you cannot measure&amp;rdquo;. In this paper, we employ an established method for quantifying technical debt, namely FITTED, to measure the technical debt of an industrial software product, and contrast it to the perception of the software engineers. The main contribution of this work is the validation of FITTED in an industrial setting, and particularly in the Embedded Low Power Systems domain. The results of the study suggest that FITTED is able of accurately ranking software components, with respect to their principal, interest, and interest probability.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780572/">780572</awardNumber>
      <awardTitle>Software Development toolKit for Energy optimization and technical Debt elimination</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
110
69
views
downloads
All versions This version
Views 110110
Downloads 6969
Data volume 39.6 MB39.6 MB
Unique views 9292
Unique downloads 6262

Share

Cite as