Journal article Open Access

Towards plug&play smart thermostats inspired by reinforcement learning

Marantos, Charalampos; Lamparkos, Christos; Tsoutsouras, Vasileios; Siozios, Kostas; Soudris, Dimitrios


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-11-01</subfield>
  </datafield>
  <controlfield tag="005">20200120172137.0</controlfield>
  <controlfield tag="001">3380093</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3380093</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Buildings are immensely energy-demanding and this fact is enhanced by the expectation of even more increment of energy consumption in the future. In order to mitigate this problem, a low-cost, flexible and high-quality Decision-Making Mechanism for supporting the tasks of a Smart Thermostat is proposed. Energy efficiency and thermal comfort are the two primary quantities regarding control performance of a building&amp;#39;s HVAC system. Apart from demonstrating a conflicting relationship, they depend not only on the building&amp;#39;s dynamics, but also on the surrounding climate and weather, thus rendering the problem of finding a long-term control scheme hard, and of stochastic nature. The introduced mechanism is inspired by Reinforcement Learning techniques and aims at satisfying both occupants&amp;#39; thermal comfort and limiting energy consumption. In contrast to to existing methods, this approach focuses on a plug&amp;amp;play solution, that does not require detailed building models and is applicable to a wide variety of buildings as it learns the dynamics using gathered information from the environment. The proposed control mechanisms were evaluated via a well-known building simulation framework and implemented on ARM-based, low-cost embedded devices.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, National Technical University of Athens, Greece</subfield>
    <subfield code="a">Lamparkos, Christos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, National Technical University of Athens, Greece</subfield>
    <subfield code="a">Tsoutsouras, Vasileios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Physics, Aristotle University of Thessaloniki, Greece</subfield>
    <subfield code="a">Siozios, Kostas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, National Technical University of Athens, Greece</subfield>
    <subfield code="a">Soudris, Dimitrios</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1692465</subfield>
    <subfield code="z">md5:9535ec04263c03a9be0a7ee8cc2cecd3</subfield>
    <subfield code="u">https://zenodo.org/record/3380093/files/towards_plug_and_play.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, National Technical University of Athens, Greece</subfield>
    <subfield code="a">Marantos, Charalampos</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">HVAC control</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Intelligent agents</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Energy efficiency</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Learning systems</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Decision making</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Embedded software</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3285017.3285024</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Towards plug&amp;play smart thermostats inspired by reinforcement learning</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780572</subfield>
    <subfield code="a">Software Development toolKit for Energy optimization and technical Debt elimination</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
48
204
views
downloads
Views 48
Downloads 204
Data volume 345.3 MB
Unique views 47
Unique downloads 198

Share

Cite as