Journal article Open Access
Marantos, Charalampos; Lamparkos, Christos; Tsoutsouras, Vasileios; Siozios, Kostas; Soudris, Dimitrios
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3380093</identifier> <creators> <creator> <creatorName>Marantos, Charalampos</creatorName> <givenName>Charalampos</givenName> <familyName>Marantos</familyName> <affiliation>School of ECE, National Technical University of Athens, Greece</affiliation> </creator> <creator> <creatorName>Lamparkos, Christos</creatorName> <givenName>Christos</givenName> <familyName>Lamparkos</familyName> <affiliation>School of ECE, National Technical University of Athens, Greece</affiliation> </creator> <creator> <creatorName>Tsoutsouras, Vasileios</creatorName> <givenName>Vasileios</givenName> <familyName>Tsoutsouras</familyName> <affiliation>School of ECE, National Technical University of Athens, Greece</affiliation> </creator> <creator> <creatorName>Siozios, Kostas</creatorName> <givenName>Kostas</givenName> <familyName>Siozios</familyName> <affiliation>Department of Physics, Aristotle University of Thessaloniki, Greece</affiliation> </creator> <creator> <creatorName>Soudris, Dimitrios</creatorName> <givenName>Dimitrios</givenName> <familyName>Soudris</familyName> <affiliation>School of ECE, National Technical University of Athens, Greece</affiliation> </creator> </creators> <titles> <title>Towards plug&play smart thermostats inspired by reinforcement learning</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>HVAC control</subject> <subject>Intelligent agents</subject> <subject>Energy efficiency</subject> <subject>Learning systems</subject> <subject>Decision making</subject> <subject>Embedded software</subject> </subjects> <dates> <date dateType="Issued">2018-11-01</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3380093</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3285017.3285024</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Buildings are immensely energy-demanding and this fact is enhanced by the expectation of even more increment of energy consumption in the future. In order to mitigate this problem, a low-cost, flexible and high-quality Decision-Making Mechanism for supporting the tasks of a Smart Thermostat is proposed. Energy efficiency and thermal comfort are the two primary quantities regarding control performance of a building&#39;s HVAC system. Apart from demonstrating a conflicting relationship, they depend not only on the building&#39;s dynamics, but also on the surrounding climate and weather, thus rendering the problem of finding a long-term control scheme hard, and of stochastic nature. The introduced mechanism is inspired by Reinforcement Learning techniques and aims at satisfying both occupants&#39; thermal comfort and limiting energy consumption. In contrast to to existing methods, this approach focuses on a plug&amp;play solution, that does not require detailed building models and is applicable to a wide variety of buildings as it learns the dynamics using gathered information from the environment. The proposed control mechanisms were evaluated via a well-known building simulation framework and implemented on ARM-based, low-cost embedded devices.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/780572/">780572</awardNumber> <awardTitle>Software Development toolKit for Energy optimization and technical Debt elimination</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 48 |
Downloads | 204 |
Data volume | 345.3 MB |
Unique views | 47 |
Unique downloads | 198 |