Journal article Open Access

A Design Space Exploration Framework for Convolutional Neural Networks Implemented on Edge Devices

Tsimpourlas, Foivos; Papadopoulos, Lazaros; Bartsokas, Anastasios; Soudris, Dimitrios


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3380072">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3380072</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3380072"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Tsimpourlas, Foivos</foaf:name>
        <foaf:givenName>Foivos</foaf:givenName>
        <foaf:familyName>Tsimpourlas</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>School of Electrical and Computer Engineering, National Technical University of Athens (Zographou Campus), Athens, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Papadopoulos, Lazaros</foaf:name>
        <foaf:givenName>Lazaros</foaf:givenName>
        <foaf:familyName>Papadopoulos</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>School of Electrical and Computer Engineering, National Technical University of Athens (Zographou Campus), Athens, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Bartsokas, Anastasios</foaf:name>
        <foaf:givenName>Anastasios</foaf:givenName>
        <foaf:familyName>Bartsokas</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>School of Electrical and Computer Engineering, National Technical University of Athens (Zographou Campus), Athens, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Soudris, Dimitrios</foaf:name>
        <foaf:givenName>Dimitrios</foaf:givenName>
        <foaf:familyName>Soudris</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>School of Electrical and Computer Engineering, National Technical University of Athens (Zographou Campus), Athens, Greece</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>A Design Space Exploration Framework for Convolutional Neural Networks Implemented on Edge Devices</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2018</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/780572/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2018-07-18</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3380072"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3380072</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/TCAD.2018.2857280"/>
    <dct:description>&lt;p&gt;Deploying convolutional neural networks (CNNs) in embedded devices that operate at the edges of Internet of Things (IoT) networks provides various advantages in terms of performance, energy efficiency, and security in comparison with the alternative approach of transmitting large volumes of data for processing to the cloud. However, the implementation of CNNs on low power embedded devices is challenging due to the limited computational resources they provide and to the large resource requirements of state-of-the-art CNNs. In this paper, we propose a framework for the efficient deployment of CNNs in low power processor-based architectures used as edge devices in IoT networks. The framework leverages design space exploration (DSE) techniques to identify efficient implementations in terms of execution time and energy consumption. The exploration parameter is the utilization of hardware resources of the edge devices. The proposed framework is evaluated using a set of 6 state-of-the-art CNNs deployed in the Intel/Movidius Myriad2 low power embedded platform. The results show that using the maximum available amount of resources is not always the optimal solution in terms of performance and energy efficiency. Fine-tuned resource management based on DSE, reduces the execution time up to 3.6% and the energy consumption up to 7.7% in comparison with straightforward implementations.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/3380072"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.1109/TCAD.2018.2857280</dcat:accessURL>
        <dcat:byteSize>1122101</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3380072/files/a_design_space_exploration.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/780572/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">780572</dct:identifier>
    <dct:title>Software Development toolKit for Energy optimization and technical Debt elimination</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
36
173
views
downloads
Views 36
Downloads 173
Data volume 194.1 MB
Unique views 35
Unique downloads 162

Share

Cite as