
Methods and Tools for TD Estimation and
Forecasting: A State-of-the-art Survey
Dimitrios Tsoukalas∗†, Miltiadis Siavvas∗‡, Marija Jankovic∗, Dionysios Kehagias∗,

Alexander Chatzigeorgiou†, Dimitrios Tzovaras∗
∗ Centre for Research and Technology Hellas, Thessaloniki, Greece

† Department of Applied Informatics, University of Macedonia, Thessaloniki 54643, Greece
‡ Imperial College London, SW7 2AZ, London, United Kingdom

tsoukj@iti.gr, siavvasm@iti.gr, jankovicm@iti.gr, diok@iti.gr, achat@uom.gr, dimitrios.tzovaras@iti.gr

Abstract—Technical debt (TD), a metaphor inspired by the
financial debt of economic theory, indicates quality compromises
that can yield short-term benefits in the software development
process, but may negatively affect the long-term quality of
software products. Numerous techniques, methods, and tools
have been proposed over the years for estimating and managing
TD, providing a variety of options to the developers and
project managers of software applications. However, apart from
managing TD, predicting its future value is equally important
since this knowledge is expected to facilitate decision-making
tasks regarding software implementation and maintenance,
such as incurring or paying off TD instances. To this end, the
purpose of the present study is to (i) summarize the work that
has been conducted until today in the field of TD estimation
and forecasting, and (ii) to identify existing open issues that
have not been adequately addressed yet and require further
research. The present survey led to two interesting observations.
Firstly, none of the existing TD estimation methods and tools
has reached a desired level of maturity, while a large volume
of previously uninvestigated metrics and techniques exist that
could potentially increase the completeness of TD estimation.
Secondly, no notable contributions exist in the field of TD
forecasting, indicating that it is a scarcely investigated field.
The latter constitutes the main finding of the present literature
review, since TD forecasting could lead to the development
of practical decision-making mechanisms, which could assist
developers and project managers in taking proactive actions
regarding TD repayment.

Keywords—technical debt; technical debt estimation; technical
debt forecasting

I. INTRODUCTION

The term Technical Debt was first introduced in 1992 by
Ward Cunningham [1] to describe the problem of introducing
long-term problems to software products, by not resolving
existing quality issues early enough in the overall software
development lifecycle (SDLC). The TD metaphor was initially
related to software implementation (i.e. at the code level), but
was gradually extended to all phases of the SDLC, i.e. software
architecture, design, documentation, requirements, and testing
[2]. The TD notion was inspired by the concept of the
financial debt of economic theory, leading to the adoption of a
multitude of financial theories for its identification, repayment,
quantification etc. As in financial debt, TD incurs interest
payments in the form of increased future costs owing to the
earlier quick and dirty design and implementation choices.

However, managing TD is more complicated than managing
financial debt because of the uncertainty involved [3].

The efficient management of TD requires a clear under-
standing of the state of the art of Technical Debt Management
(TDM). One of the most dominant characteristics of TD is its
interdisciplinary nature since it combines elements from both
software engineering and financial theory [4]. As a result, the
methods proposed in the literature for managing TD follow
two different paths and thus, can be classified into two broad
schools of thought. The first one is the financial aspect of
TD, which includes approaches such as Portfolio management,
Real options and software economics [4]. The second one
is the software engineering aspect of TD, which includes
estimation methods such as calculation models, code metrics,
operational metrics, etc. [5], with the SQALE method being
the most widely used among them [6].

Although the number of various techniques, methods and
tools for managing TD continues to proliferate, they have not
yet reached the desired level of maturity [5]. Besides, since no
commonly accepted standard for estimating and managing TD
[5] exists, it is not clear how these tools map to TDM activities
like identification, measurement, or repayment. As a result,
researchers, developers and managers perceive the concept of
TD in different ways and are unable to distinguish between
the software quality compromises that can be attributed as TD
and those that cannot.

Nevertheless, the evolution of a software system usually
implies an analogous evolution of its TD as well. A method
or tool that would assist software project managers in decision-
making in uncertainty by predicting future TD of a software
system is of paramount importance. However, while various
researchers have addressed the topic of forecasting the evolu-
tion of various aspects directly or indirectly related to the TD
of a software project, such as code smells [7], fault-proneness
[8] and evolution trends [9], no concrete approaches have been
proposed so far regarding the forecasting of TD itself.

To this end, in this study two important TD-related aspects,
namely TD estimation and TD forecasting, are theoretically
examined. In particular, the purpose of this paper is to review
the most significant attempts in the broader field of TD
estimation and forecasting, identify existing open issues of
high interest, and potentially propose directions for future re-



search. Hence, this paper can act as a reference for researchers
that wish to contribute in the field of TD, to gain a solid
understanding of existing solutions and identify open issues
that require further research. All these are presented in detail
in the rest of the paper.

The rest of the paper is structured as follows: Section 2
describes the related work on TD estimation methods and
tools, as well as forecasting methods and techniques under
the scope of Software Evolution analysis. Section 3 describes
the open issues that were identified through the present survey
in the field of TD estimation and forecasting and proposes
possible contributions. Finally, Section 4 concludes the paper
and presents potential directions for future work.

II. RELATED WORK

A. The Technical Debt Metaphor

Ward Cunningham introduced the metaphor of Technical
Debt [1] in 1992 as follows:

”Shipping first-time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite. Objects make the cost of this transaction tolerable.
The danger occurs when the debt is not repaid. Every minute
spent on not-quite-right code counts as interest on that debt.
Entire engineering organizations can be brought to a stand-
still under the debt load of an unconsolidated implementation,
object-oriented or otherwise”.

There are several causes for creating TD. Fowler [10] [11]
states that software development debt is usually a consequence
of time pressure. Software engineers and developers often
make non-optimal design decisions to quickly address fast-
changing requirements, which is leading to a poorly designed
system and increased TD over time. Kruchten et al. [12]
assign TD to YAGNI decisions (You Ain’t Gonna Need It)
that often result in unjustified and unnecessary investments
in new features, architecture, over engineering, etc. Martin
Fowler [11] proposes TD quadrant, a 22 matrix (Intentionality
x Wisdom), to visualize four different pathways that lead to
TD. According to his study, it is not enough to discuss if
something is a TD or not, but it is crucial to analyze intention
(deliberate or inadvertent) and awareness (reckless or prudent).
McConnell [13] suggests a similar categorization, arguing that
TD may be unintentional and intentional. Unintentional debt is
often a consequence of poor coding practices, while intentional
debt is a result of non-optimal decisions that are committed on
purpose. He proposes a further classification into short-term
and long-term debt. Short-term debt is taken tactically to cover
smaller gaps with the goal to speed up software release, and it
is expected to be paid off quickly. On the other hand, long-term
debt is taken strategically having in mind significant software
improvements and can be carried out for years. Suryanarayana
et al. [14] point out that extreme situation when accumulated
TD is enormous and cannot be paid off could lead to technical
bankruptcy.

Moreover, several recent studies have highlighted the need
to analyze TD from SDLC point of view. Li et al. [5] classify
different TD types into ten levels based on the occurrence

during the main phases of a software development process
(i.e., requirements, design and architecture, implementation,
testing, building, documentation, infrastructure, versioning,
and defects). According to the authors, requirements TD
refers to compromises made between the optimal require-
ments specification and the actual system implementation,
while architectural TD is occurred by not-optimal architecture
decisions that affect some horizontal quality aspects, such
as maintainability. Design TD refers to code smells such
as intensive coupling, God classes, high-complexity, etc. [1].
Code TD is the poorly written code that violates best coding
practices or coding rules, such as duplicated code. Test TD
refers to incomplete testing coverage while build TD refers
to flaws or complexity in the build process of a software
system. Documentation TD refers to insufficient or incomplete
documentation. Finally, versioning TD refers to the problems
in source code versioning, while defect TD refers to defects,
bugs, or failures found in software systems. However, several
researchers and practitioners are sharing the opinion that visi-
ble symptoms of low software quality, such as defects or bugs,
should not be considered as TD liabilities [15]. Instead, they
suggest that TD should be limited to internal system qualities,
primarily maintainability and evolvability. Similarly, Kruchten
et al. [12] outline the TD that occurs in various phases of
the development process (i.e., code, tests, documentation).
They attribute the TD of architecture to bad structural or
architectural choices or technological gaps. Finally, Sterling
[16] observes that the SDLC process may affect the size of
the TD. For example, an agile software development process
would create less TD than a waterfall model due to a more
flexible response to change.

Like the financial debt, TD also entails paying interest
in the form of additional effort that is needed to be spent
on maintaining the software due to its declining design-time
quality. Several studies have dealt with the notion of interest
in TDM. According to Ampatzoglou et al. [4] and Li et al.
[5], interest is the most frequently used financial term in TDM
research field and is defined through various approaches like
references to economic theory [17], or software engineering
concepts [18] [19]. Under this perspective, Chatzigeorgiou
et al. [20] propose an approach for estimating the breaking
point under which the accumulated interest becomes larger
than the principal, i.e. the timestamp in which TD of a
software product is no longer sustainable. Trying to expand
this work, Ampatzoglou et al. [21] instantiate and validate
FITTED, a framework that assesses the breaking point of
source code modules to support decision making with respect
to investments on improving quality of a software.

B. Technical Debt Estimation Methods and Tools

Technical Debt Management (TDM) is one of the fastest-
growing research areas of software technology (90% of the
research was published after 2010 [22]) and even has a
dedicated conference, namely International Conference on
Technical Debt (TechDebt). TDM includes several different
activities that assist managers and developers in making TD



visible and controllable [5], such as TD identification, estima-
tion, prioritization, prevention and repayment. There are many
methods and tools proposed in the literature for supporting
TDM activities [23] and, as in the case of financial debt,
the management of TD must be programmed founded on
the amount of interest and the possibility of repayment over
time. Concerning specific approaches to TDM, Brown et al.
[2] stress the need to develop new models and techniques
for assessing, managing, identifying causes, and repaying TD
based on its economic impact. They argue that compensation
must be made in such a way that there is a balance between
short-term deadlines and long-term viability. Additionally,
Seaman et al. [24] identify four approaches to TDM, including
Cost-Benefit Analysis, Analytic Hierarchical Process (AHP),
Portfolio Management Model and Real Options.

In this study, we will be focusing on TD estimation, a
specific activity of TDM that quantifies the benefit and cost of
known TD in a software system through estimation techniques.
As it is the case for all TDM activities, TD estimation methods
and tools can be also separated into two broad categories, the
financial approaches and the software engineering approaches.

Financial Approaches
In recent years, various approaches based on economic

theory have been applied to quantify TD principal and in-
terest. One of the first TD modeling and visualization efforts
include the Highsmith curve [25], which quantifies TD as the
difference between actual and optimal Cost of Change (COC)
over time.

Following the financial aspects of TD estimation, Guo and
Seaman [19] leverage the Portfolio Management theory in the
finance domain to determine the optimal collection of TD
items that should be incurred or held. Through their approach,
the researchers try to quantify TD principal as the effort
required to resolve TD items and TD interest as the probability
of interest to occur. Based on the Portfolio Management
approach, Holvitie and Leppanen introduce DebtFlag [26],
a tool designed to support TDM by capturing, tracking and
resolving TD of software projects at the implementation level.
This tool provides developers with lightweight documentation
functionalities to capture TD and link them to corresponding
parts in the implementation phase.

In another approach towards TD estimation, Alzaghoul and
Bahsoon [27] state that the web service selection decision
might incur a TD that is essential to be quantified and
managed. Towards this aim, they exploit the Real Options
theory by introducing a new method that aims to quantify TD
in service level for cloud-based system architectures. In their
approach, they construct a two-step binomial tree to quantify
and predict the period during which TD is reduced to zero,
taking into consideration several dimensions including Service
Level Agreement (SLA), none-compliance, quick selection
decisions and underutilization of the web service capacity.

Finally, in their study, Curtis et al. [28] are based on
Software Economics theories and quantify TD as the cost of
violating architectural rules, code rules, and best practices,

giving three levels of severity to violations: high, medium
and low. In order to achieve that, they introduce a function
that quantifies principal and interest taking as input software
artefacts, metrics, historical effort, or personnel activity. To
further support their findings, they integrate their formula
into Application Intelligence Platform (CAST), a tool that
quantifies TD by identifying violations in source code and
categorizing them by quality attributes. This tool is designed
to manage TD by analyzing multi-tiered, multi-technology
applications for technical vulnerabilities and adherence to
architectural and coding standards.

Software Engineering Approaches
The software engineering aspect of TD estimation lays its

foundations on the notion that software quality metrics and
the time and effort required for a software change can be
used to quantify its impact. For instance, if a software is
vulnerable or does not satisfy all system requirements, vulner-
abilities must be fixed and the requirements met. Therefore,
the number of vulnerabilities or unsatisfied requirements is an
indicator of TD. In addition, if a software has been produced
with excessively complex code, then its future changes are
more expensive. In this case, metrics like coupling, cohesion,
complexity, etc. can also be applied to assess TD [29].

Over the last years, several software engineering methods
have been proposed to quantify a software systems level of TD.
In a related study, Gaudin [30] introduces a new TD estimation
formula that takes as input custom source code metrics to
calculate a global indicator of TD. This indicator reflects
how much effort is required to get a flawless score on the
Seven Axes of Quality analysis, namely the bad distribution of
the complexity, duplications, lack of comments, coding rules
violations, potential bugs, no unit tests and bad design. One
of the most representative tools for assessing the TD of a
software product using the Seven Axes of Quality formula
is the Technical Debt Evaluation plugin for SonarQube, an
open source platform for continuous inspection of code qual-
ity. SonarQube provides a dashboard for visualizing quality
attributes of code, tests, design, and architecture. Under the
hood, it performs static analysis of the source code to detect
bugs, code smells and security vulnerabilities and provides the
capability to analyze, assess, visualize and prioritize TD based
on the quality axes as mentioned above.

In another study, Bohnet and Dllner [31] calculate TD by
using Software Maps to monitor code quality and development
activity. In their approach, they argue that software maps
enable managers to express and combine information about
software development, software quality, and system dynamics.
They also claim that software maps can support decision-
making processes by investing the scarce developers time to
improve code quality and facilitate the future maintenance of
the system.

Similarly, Nugroho et al. [32] propose an approach for
quantifying TD principal and interest based on an empirical
assessment method of software quality developed by the
Software Improvement Group (SIG). Their method comprises



of two parts, the estimation of repair effort and the estimation
of maintenance effort. Following a different approach, the
work of De Groot et al. [33] introduces three models to
determine software value based on the notions of TD by using
the Rebuild Value, i.e. the cost to rebuild a system from scratch
using similar technology. In one of their models, they calculate
the TD as the amount of work (in person-months) that is
required to improve the level of software quality. However, to
the best of knowledge, no tools exist to implement the methods
mentioned above.

In addition, Ernst [17] proposes an approach for TD es-
timation on the requirements level by introducing Solution
comparison, a method that calculates the distance between
the optimal specification and the actual implementation of
the system. To validate his method, in the same study he
also introduces RE-KOMBINE, a requirements modeling tool
that enables useful measures and models the TD present in
requirements tradeoffs. Another tool based on the same notion
is proposed by Strasser et al. [34]. The Automated Software
Tool for Validating Design Patterns based on the Role Based
Metamodeling Language (RBML) is a compliance checker
that quantifies TD on the design level by calculating the
distance between a realization of a design pattern and the
intended design. For that purpose, the tool compares UML
class diagrams of instances of design patterns with their
RBML representations and reports back if the given UML
diagram is compliant or not.

Moreover, Curtis et al. [35] present a formula for TD
calculation with adjustable parameters for estimating the prin-
cipal of TD from structural quality data. On the other hand,
Letouzey [36] presents the widely used SQALE method for
monitoring and assessing the quality and TD of the source
code. One of the most representative tools for assessing the
TD of a software product using the SQUALE method is
SQUORE, a commercial quality management tool that uses
four indicators namely: efficiency, portability, maintainability,
and reliability to calculate the TD. For each of these indicators,
a set of quality rules is assigned. One of the advantages of
this tool is that it takes into account source code, unit tests,
documentation quality, available functional requirements, etc.
resulting in a more accurate and complete calculation of TD.
Also, SonarQube used the SQUALE method to assess the TD
of a software product in previous years, but it has switched to
another method.

In the same way, Nord et al. [37] follow an architecture-
focused and measurement-based approach to introduce a met-
ric for the rapid management of TD associated with architec-
ture level in order to optimize development costs. To support
their work, they argue that making the architectural debt
visible provides all necessary information for making informed
decisions for managing the potential impact of rework over
time. Similarly, Marinescu [38] introduces a novel framework
for assessing TD using a technique for detecting design flaws
and violations of well-known rules and design principles. To
make the framework inclusive, the author integrates a set of
metric-based detection rules for design flaws that cover the

majority of the aspects of design such as complexity, coupling
and encapsulation.

Finally, in a recent study, Sanchez et al. [39] introduce
TEDMA, an open tool that quantifies TD by computing TD
metrics and integrating techniques implemented by third party
tools. The novelty of this tool is that it supports analysis of
the evolution of the metrics over the software evolution of the
project. This kind of approach has not been introduced in any
of the previous methods and tools presented in the study.

C. Software Evolution and Technical Debt Forecasting

Software evolution is a term used in software engineering
to refer to the process that starts with the development and
then provides incremental updates of the software. According
to Lehmans laws of software evolution, software systems must
evolve over time or they will become irrelevant. With the
evolution of the software systems, accumulated TD is evolving
as well. Under those circumstances, being able to forecast not
only the evolution of software quality but also the evolution
of TD principal and interest of a software system in the future
is of great significance and value. Such a work would enable
project managers and developers to support decision-making
in uncertainty and plan precise payback strategies, in order to
manage TD promptly and avoid unforeseen situations long-
term.

Gaining a higher level of information about the evolution
of large software systems is a key challenge in dealing with
increasing complexity and decreasing software quality [40].
For this reason, the attempts to analyze, understand and predict
the evolution of a software system have increased considerably
in the last years and nowadays, the terms software evolution
and software maintenance are often used as synonyms [41].
In a relevant study, Lehman [42] highlights the importance
of studying the evolutionary trends by defining a set of laws
that rule the growth of software systems. Similarly, a study
by Godfrey and German [43] compares software evolution to
other kinds of evolution in a set of different domains, while
Girba and Ducasse [44] propose a set of requirements for
building evolution models. In his work, Mens [41] stresses
the need to develop better predictive models for measuring
and estimating the cost and effort of software maintenance
and evolution activities with a higher accuracy. Evolution
models are useful in software development, since being able
to estimate the evolution of a software product, could provide
valuable insight for its quality as well.

According to ISO/IEC 25010 [45], which is a well-accepted
international standard on Software Quality, the notion of
software quality is hierarchically decomposed into a set of
quality attributes, like Maintainability, Reliability, and Secu-
rity. A multitude of quality models have been proposed over
the years allowing the assessment and/or prediction of these
quality attributes individually [46] [47] [48] or of the overall
quality itself [49] [50]. For instance, in [46] a model based
on Bayesian Belief Networks is implemented for assessing
and predicting the Maintainability of a software application
based on a set of software metrics. Similarly, Van Koten et al.



[47] try to predict object-oriented software maintainability by
applying a Bayesian network, while Zhou et al. [48] approach
the same problem by using multivariate adaptive regression
splines. Reliability Growth Models (RGMs) [51] also consti-
tute representative examples of predictive models for software
quality. These models typically use defect detection data or
past observations of failures, which are collected during test
and operation phases of the SDLC, to predict the future level
of Reliability, expressed in terms of a number of failures.

As far as the quality attribute of Security is concerned,
a large number of models for predicting the existence of
vulnerabilities in software applications have been proposed
over the years [52] [53] [54] [55]. For instance, Alhazmi
et al. [52] use the density of the reported vulnerabilities
of a software application to predict the number of actual
vulnerabilities in future versions of the application. Similarly,
in [53] the authors propose SAVI, a vulnerability indicator that
predicts the application’s post-release vulnerabilities, based on
pre-release security-related static analysis results. Factors that
are not directly related to software can be also leveraged for
vulnerability prediction. For instance, in a relatively recent
study, Roumani et al. [54] examine the relationship between
the firms financial records (e.g., size, financial performance,
sales, research and development expenditures etc.) and secu-
rity vulnerabilities that may exist in their software products,
revealing a strong association between these two factors.

Since quality attributes are relatively abstract and difficult
to be measured directly from the artifacts of software products
(e.g., source code), ISO/IEC 25010 [45] further decomposes
them into a set of more concrete quality properties (e.g.,
complexity), which can be directly quantified through common
metrics (e.g. McGabes Cyclomatic Complexity [56]). Simi-
larly, to the high-level quality attributes, a large number of
methods have been proposed to estimate the future evolution
of software quality properties. The majority of these methods
try to approach the subject by applying forecasting models on
individual software properties based on the analysis of avail-
able information (historical data, trends, source code metrics,
etc.). For instance, Fontana et al. [7] compare various machine
learning techniques for code smell detection. In another study,
Basili et al. [57] apply Logistic Regression for the validation
of object-oriented design metrics, while Arisholm et al. [8]
use Principal Component Analysis to predict software error-
proneness of software components. Moreover, Yazdi et al. [58]
try to model the evolution of the design of software systems
by applying ARMA Time Series. Finally, in a recent study
Chaicalis and Chatzigeorgiou [9] employ Network Models to
forecast software evolution trends of Java systems.

The multitude of models that are available in the literature
for predicting the evolution of specific quality attributes and
quality properties reveal the importance of quality prediction
and forecasting in the software engineering community. Since
TD is an indicator of software quality (with an emphasis
on maintainability), predicting its future value is considered
equally important. However, although many studies have fo-
cused on the evolution of software systems, only a few have

focused on the evolution of TD [59]. In fact, to the best of our
knowledge the only known study on TD forecasting is [60], in
which, Scourletopoulos et al. attempt to introduce the concept
of predicting TD for Software as a Service (SaaS) systems,
by exploiting COCOMO, a software cost model proposed by
Boehm [61]. However, their study is limited only to cloud
computing systems.

The need for knowing the evolution of TD has been
highlighted by a recent study, in which Ampatzoglou et al.
[21] link software maintainability with the notion of TD, while
stressing the need for project managers to be able to preserve a
software product maintainable for as long as possible. For that
purpose, the authors propose the term breaking point, which
refers to the point in time where the accumulated interest will
be equal to the TD principal, i.e., the cost becomes higher than
the benefit [62], thus providing managers with an insightful
decision-making tool. Hence, forecasting the evolution of TD
principal and interest could be valuable for estimating the point
in which the software product could become unmaintainable.

III. OPEN ISSUES AND CONTRIBUTIONS

Despite the multitude of methods proposed in the bibliog-
raphy for the estimation of TD, there are still many open
issues that require further investigation. First of all, none
of the already proposed methods and tools have reached a
desired level of maturity, and according to recent studies [5],
there is no commonly accepted standard for estimating and
managing TD. As a result, developers and managers perceive
the concept of TD in different ways, while current methods
and tools are not able to map software quality attributes to
TDM activities. Moreover, the majority of well-established TD
estimation methods, including the widely used SQALE method
[6], mainly analyze the source code of the software. There is a
large volume of potential metrics and techniques that have not
been used yet for estimating TD, and which could potentially
increase the completeness of the TD estimation concept. In
addition, most of the already existing tools provide different
TD indexes [63], creating confusion in the community about
which of the current metrics should be selected, or how they
should be combined [64].

Therefore, an interesting topic would be to investigate
whether the combination of software-related metrics extracted
from repositories and already existing TD estimation tech-
niques and tools may lead to better and more accurate TD
estimation methods. In addition, having in mind that new met-
rics and techniques for TD are emerging rapidly [65], there is
a need for a single tool that combines software metrics and TD
estimation techniques implemented by different approaches.

Another critical issue is that no particular approaches have
been proposed for the forecasting of TD, which is opposite to
extensive research that has been performed for predicting the
evolution of individual software features or quality attributes
that are directly or indirectly related to the TD of a software
project, such as code smells [7], fault-proneness [8] and
evolution trends [9]. A contribution to this challenge has high
value since TD forecasting could lead to the development



of practical decision-making mechanisms aiming to improve
the TD repayment strategy. Furthermore, the decision making
mechanisms should be integrated into an application or a tool
to facilitate efficient identification of the aspects that might
cause potential TD accumulation.

Hence, another interesting topic is whether the combina-
tion of software-related metrics and already existing software
evolution approaches, along with existing forecasting methods
could lead to the development of novel models that provide
predictions about the evolution of a softwares future TD.
Towards this goal, statistical methods such as causal models
(including the widely used regression analysis) or time series
models (including the widely used ARIMA model) [66] could
be investigated. In addition, machine-learning models like
Artificial Neural Networks (ANNs) [67] [68], regression trees,
support vector regression and nearest neighbor regression [69]
[70] could also be examined.

Last but not least, software repositories such as versioning,
project management and issue-tracking systems, as well as
archived communication between project personnel could be
a potential source of TD related data. We believe that there is
great potential in mining this information to extract software
related metrics and thus, unveil ways that can help to support
the development of better TD estimation and prediction meth-
ods. In fact, we believe that by analyzing multiple sources
of information and predicting the evolution of TD on specific
software artifacts, triangulation can be achieved and yield more
accurate estimates. To further ease and automate this process,
a tool that would utilize multiple sources of information
accompanying a software project by pairing existing TD es-
timation methods with specialized techniques for forecasting,
code analysis, software evolution analysis and natural language
processing could pave the way for the advance in the state
of the art in this domain. By doing so, another important
contribution to the research community would be to provide
a highly balanced, publicly available dataset of TD related
metrics that could be reused by future researchers for relevant
studies and comparison or validation of TDM methods and
tools.

IV. CONCLUSIONS AND FUTURE WORK

In the present study, we investigated the state-of-the-art and
examined the major contributions that have been made until
today in the field of TD estimation and forecasting. Through
our study, we identified some interesting open issues that
should be addressed through further research. In particular,
already existing methods and tools for TD estimation have not
reached a satisfactory level of maturity yet, while there is still a
large volume of potential metrics and techniques that have not
been used and that could potentially increase the completeness
of the TD estimation concept. In addition, although there has
been extensive research with respect to predicting the evolution
of individual software features, quality attributes, and quality
properties that are directly or indirectly related to the TD of a
software project, no concrete contributions exist in the related
literature regarding TD forecasting.

Therefore, the improvement of already existing TD esti-
mation methods, by incorporating previously uninvestigated
software-related factors with potential relevance to TD is an
interesting direction for future research. Another interesting
topic would be to investigate different efficient ways to pro-
duce TD forecasting models for accurate prediction of TD
principal and interest evolution. In addition, it would be useful
to examine if TD forecasting could foster the development of
high-quality software products. To the best of our knowledge,
this is the first study that raises the awareness of the gap in
the field of TD, regarding methods, tools, and techniques for
forecasting the evolution of TD principal and interest.

The aforementioned identified open issues are expected to
be addressed by the work conducted within the scope of the
ongoing European project SDK4ED. Under this prism, we aim
to cover the existing gap in the field by deploying a toolbox
that combines various software metrics with TD estimation,
forecasting and decision-making mechanisms for assisting
developers and project managers in taking proactive actions
regarding TD repayment. This toolbox will be developed by
scientific partners and then evaluated by industrial partners
within the SDK4ED context.

ACKNOWLEDGMENT

This work is partially funded by the European Union’s
Horizon 2020 Research and Innovation Programme through
SDK4ED project under Grant Agreement No. 780572.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1993.

[2] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R. Nord, I. Ozkaya et al., “Managing technical debt
in software-reliant systems,” in Proceedings of the FSE/SDP workshop
on Future of software engineering research. ACM, 2010, pp. 47–52.

[3] C. Seaman and Y. Guo, “Measuring and monitoring technical debt,” in
Advances in Computers. Elsevier, 2011, vol. 82, pp. 25–46.

[4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,
“The financial aspect of managing technical debt: A systematic literature
review,” Information and Software Technology, vol. 64, pp. 52–73, 2015.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, pp. 193–220, 2015.

[6] J.-L. Letouzey and M. Ilkiewicz, “Managing technical debt with the
sqale method,” IEEE software, vol. 29, no. 6, pp. 44–51, 2012.

[7] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing
and experimenting machine learning techniques for code smell detec-
tion,” Empirical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[8] E. Arisholm and L. C. Briand, “Predicting fault-prone components in a
java legacy system,” in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering. ACM, 2006, pp. 8–17.

[9] T. Chaikalis and A. Chatzigeorgiou, “Forecasting java software evolution
trends employing network models,” IEEE Transactions on Software
Engineering, vol. 41, no. 6, pp. 582–602, 2015.

[10] M. Fowler. (2003) Technical debt. [Online]. Available:
http://www.martinfowler.com/bliki/TechnicalDebt.html

[11] M. Fowler. (2009) Technical debt quadrant. [Online]. Available:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html

[12] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[13] S. McConnell. (2012) How to categorize and communicate technical
debt. [Online]. Available: https://www.castsoftware.com/blog/steve-
mcconnell-on-categorizing-managing-technical-debt



[14] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[15] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (dagstuhl seminar 16162),” in
Dagstuhl Reports, vol. 6, no. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[16] C. Sterling, Managing Software Debt: Building for Inevitable Change
(Adobe Reader). Addison-Wesley Professional, 2010.

[17] N. A. Ernst, “On the role of requirements in understanding and managing
technical debt,” in Proceedings of the Third International Workshop on
Managing Technical Debt. IEEE Press, 2012, pp. 61–64.

[18] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt invest-
ment opportunities,” in Proceedings of the 2nd Workshop on Managing
Technical Debt. ACM, 2011, pp. 39–42.

[19] Y. Guo and C. Seaman, “A portfolio approach to technical debt man-
agement,” in Proceedings of the 2nd Workshop on Managing Technical
Debt. ACM, 2011, pp. 31–34.

[20] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and T. Amana-
tidis, “Estimating the breaking point for technical debt,” in Managing
technical debt (mtd), 2015 ieee 7th international workshop on. IEEE,
2015, pp. 53–56.

[21] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampatzoglou,
A. Chatzigeorgiou, and P. Avgeriou, “A framework for managing interest
in technical debt: An industrial validation,” 2018.

[22] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou,
“Establishing a framework for managing interest in technical debt,”
in 5th International Symposium on Business Modeling and Software
Design, BMSD. Citeseer, 2015.

[23] C. Fernández-Sánchez, J. Garbajosa, C. Vidal, and A. Yagüe, “An
analysis of techniques and methods for technical debt management: a
reflection from the architecture perspective,” in Software Architecture
and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on.
IEEE, 2015, pp. 22–28.

[24] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull, and
A. Vetrò, “Using technical debt data in decision making: Potential de-
cision approaches,” in Proceedings of the Third International Workshop
on Managing Technical Debt. IEEE Press, 2012, pp. 45–48.

[25] J. Highsmith. (2010) The financial implications of technical debt.
[Online]. Available: http://jimhighsmith.com/the-financial-implications-
of-technical-debt/

[26] J. Holvitie and V. Leppänen, “Debtflag: Technical debt management
with a development environment integrated tool,” in Proceedings of the
4th International Workshop on Managing Technical Debt. IEEE Press,
2013, pp. 20–27.

[27] E. Alzaghoul and R. Bahsoon, “Cloudmtd: Using real options to manage
technical debt in cloud-based service selection,” in Managing Technical
Debt (MTD), 2013 4th International Workshop on. IEEE, 2013, pp.
55–62.

[28] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost,
and types of technical debt,” in Proceedings of the Third International
Workshop on Managing Technical Debt. IEEE Press, 2012, pp. 49–53.

[29] J. Shore. (2006) Quality with a name. [Online]. Available:
http://jamesshore.com/Articles/Quality-With-a-Name.html

[30] O. Gaudin, “Evaluate your technical debt with sonar,” Sonar, Jun, 2009.
[31] J. Bohnet and J. Döllner, “Monitoring code quality and development

activity by software maps,” in Proceedings of the 2nd Workshop on
Managing Technical Debt. ACM, 2011, pp. 9–16.

[32] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of technical
debt and interest,” in Proceedings of the 2nd Workshop on Managing
Technical Debt. ACM, 2011, pp. 1–8.

[33] J. de Groot, A. Nugroho, T. Bäck, and J. Visser, “What is the value of
your software?” in Proceedings of the Third International Workshop on
Managing Technical Debt. IEEE Press, 2012, pp. 37–44.

[34] S. Strasser, C. Frederickson, K. Fenger, and C. Izurieta, “An automated
software tool for validating design patterns,” in ISCA 24th International
Conference on Computer Applications in Industry and Engineering.
CAINE, vol. 11, 2011.

[35] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an
application’s technical debt,” IEEE software, vol. 29, no. 6, pp. 34–42,
2012.

[36] J.-L. Letouzey, “The sqale method for evaluating technical debt,” in
Managing Technical Debt (MTD), 2012 Third International Workshop
on. IEEE, 2012, pp. 31–36.

[37] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt,” in Software Ar-
chitecture (WICSA) and European Conference on Software Architecture
(ECSA), 2012 Joint Working IEEE/IFIP Conference on. IEEE, 2012,
pp. 91–100.

[38] R. Marinescu, “Assessing technical debt by identifying design flaws in
software systems,” IBM Journal of Research and Development, vol. 56,
no. 5, pp. 9–1, 2012.

[39] C. Fernández-Sánchez, H. Humanes, J. Garbajosa, and J. Dı́az, “An
open tool for assisting in technical debt management,” in Software
Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro
Conference on. IEEE, 2017, pp. 400–403.

[40] H. C. Gall and M. Lanza, “Software evolution: analysis and visualiza-
tion,” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 1055–1056.

[41] T. Mens, “Introduction and roadmap: History and challenges of software
evolution, chapter 1. software evolution,” 2008.

[42] M. M. Lehman, “Programs, life cycles, and laws of software evolution,”
Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[43] M. W. Godfrey and D. M. German, “The past, present, and future of
software evolution,” in Frontiers of Software Maintenance, 2008. FoSM
2008. IEEE, 2008, pp. 129–138.

[44] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 18, no. 3, pp. 207–236, 2006.

[45] I. O. for Standardization/International Electrotechnical Commission
et al., “Iso/iec 25010; systems and software engineering-systems and
software quality requirements and evaluation (square)-system and soft-
ware quality models”,” Authors, Switzerland Google Scholar, 2011.

[46] S. Wagner, “A bayesian network approach to assess and predict software
quality using activity-based quality models,” Information and Software
Technology, vol. 52, no. 11, pp. 1230–1241, 2010.

[47] C. Van Koten and A. Gray, “An application of bayesian network for
predicting object-oriented software maintainability,” Information and
Software Technology, vol. 48, no. 1, pp. 59–67, 2006.

[48] Y. Zhou and H. Leung, “Predicting object-oriented software main-
tainability using multivariate adaptive regression splines,” Journal of
Systems and Software, vol. 80, no. 8, pp. 1349–1361, 2007.

[49] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona,
K. Lochmann, A. Mayr, R. Plösch, A. Seidl, J. Streit et al., “Op-
erationalised product quality models and assessment: The quamoco
approach,” Information and Software Technology, vol. 62, pp. 101–123,
2015.

[50] M. G. Siavvas, K. C. Chatzidimitriou, and A. L. Symeonidis, “Qatch-
an adaptive framework for software product quality assessment,” Expert
Systems with Applications, vol. 86, pp. 350–366, 2017.

[51] J. D. Musa, Software reliability engineering: more reliable software,
faster and cheaper. Tata McGraw-Hill Education, 2004.

[52] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” Computers &
Security, vol. 26, no. 3, pp. 219–228, 2007.

[53] J. Walden and M. Doyle, “Savi: Static-analysis vulnerability indicator,”
IEEE Security & Privacy, no. 1, 2012.

[54] Y. Roumani, J. K. Nwankpa, and Y. F. Roumani, “Examining the
relationship between firms financial records and security vulnerabilities,”
International Journal of Information Management, vol. 36, no. 6, pp.
987–994, 2016.

[55] M. Siavvas, D. Kehagias, and D. Tzovaras, “A preliminary study on the
relationship among software metrics and specific vulnerability types.”

[56] Y. Shin and L. Williams, “Is complexity really the enemy of software
security?” in Proceedings of the 4th ACM workshop on Quality of
protection. ACM, 2008, pp. 47–50.

[57] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[58] H. S. Yazdi, M. Mirbolouki, P. Pietsch, T. Kehrer, and U. Kelter,
“Analysis and prediction of design model evolution using time series,” in
International Conference on Advanced Information Systems Engineer-
ing. Springer, 2014, pp. 1–15.

[59] G. Digkas, M. Lungu, A. Chatzigeorgiou, and P. Avgeriou, “The evolu-
tion of technical debt in the apache ecosystem,” in European Conference
on Software Architecture. Springer, 2017, pp. 51–66.



[60] G. Skourletopoulos, C. X. Mavromoustakis, R. Bahsoon, G. Mastorakis,
and E. Pallis, “Predicting and quantifying the technical debt in cloud
software engineering.” in CAMAD, 2014, pp. 36–40.

[61] B. W. Boehm et al., Software engineering economics. Prentice-hall
Englewood Cliffs (NJ), 1981, vol. 197.

[62] A. Ampatzoglou, A. Ampatzoglou, P. Avgeriou, and A. Chatzigeorgiou,
“A financial approach for managing interest in technical debt,” in
International Symposium on Business Modeling and Software Design.
Springer, 2015, pp. 117–133.

[63] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes pro-
vided by tools: a preliminary discussion,” in 2016 IEEE 8th International
Workshop on Managing Technical Debt (MTD). IEEE, 2016, pp. 28–31.

[64] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull et al.,
“Comparing four approaches for technical debt identification,” Software
Quality Journal, vol. 22, no. 3, pp. 403–426, 2014.

[65] C. Fernández-Sánchez, J. Garbajosa, A. Yagüe, and J. Perez, “Identifica-
tion and analysis of the elements required to manage technical debt by
means of a systematic mapping study,” Journal of Systems and Software,
vol. 124, pp. 22–38, 2017.

[66] J. Das, Statistics for Business Decisions. Academic Publishers, 2012.
[67] P. Werbos, “Beyond regression:” new tools for prediction and analysis in

the behavioral sciences,” Ph. D. dissertation, Harvard University, 1974.
[68] P. J. Werbos, “Generalization of backpropagation with application to a

recurrent gas market model,” Neural networks, vol. 1, no. 4, pp. 339–
356, 1988.

[69] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics New York, NY, USA:, 2001,
vol. 1, no. 10.

[70] E. Alpaydin, “Introduction to machine learning, 2nd edn. adaptive
computation and machine learning,” 2010.


