
ar
X

iv
:1

90
8.

09
75

3v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
6 

A
ug

 2
01

9

Image Processing in Python With Montage

John Good1 and G. Bruce Berriman2

1Caltech/IPAC-NExScI, Pasadena, CA 91125, USA; jcg@ipac.caltech.edu

2Caltech/IPAC-NExScI, Pasadena, CA 91125, USA

Abstract.
The Montage image mosaic engine has found wide applicability in astronomy re-

search, integration into processing environments, and is an examplar application for the
development of advanced cyber-infrastructure. It is written in C to provide performance
and portability. Linking C/C++ libraries to the Python kernel at run time as binary ex-
tensions allows them to run under Python at compiled speeds and enables users to take
advantage of all the functionality in Python. We have built Python binary extensions of
the 59 ANSI-C modules that make up version 5 of the Montage toolkit. This has in-
volved a turning the code into a C library, with driver code fully separated to reproduce
the calling sequence of the command-line tools; and then adding Python and C linkage
code with the Cython library, which acts as a bridge between general C libraries and
the Python interface.

We will demonstrate how to use these Python binary extensions to perform im-
age processing, including reprojecting and resampling images, rectifying background
emission to a common level, creation of image mosaics that preserve the calibration and
astrometric fidelity of the input images, creating visualizations with an adaptive stretch
algorithm, processing HEALPix images, and analyzing and managing image metadata.

1. Introduction

Montage is an image mosaic engine that creates mosiacs an from input set of FITS
images (http://montage.ipac.caltech.edu). It is deployed as a toolkit, where
each component performs one task in the creation of a mosaic, with utilities for manag-
ing and organizing files, and analyzing image metadata. Montage was first released in
2002, and has since found wide applicability in astronony and information technology.
It has found applicability in areas such as Near Earth Object (NEO) detection, instru-
ment performance, observation planning for missions such as JWST and NeoCAM, and
the creation of products for Citizen Science and "Big Data" Machine Learning projects.
The IT community has used Montage as an exemplar application in the development
and optimization of cyber-infrastructure systems, such as workfow managers and task
schedulers (Berriman & Good (2017), Berriman & Good (2018)). To date in 2018, there
have been 50 citations to Montage in the peer-reviewed literature and 120 citations in
the IT literature.

Montage is written in ANSI-C for performance and portability. This paper de-
scribes the deployment of Python binary extensions of the Montage components. These
extensions introduces the performance of Montage at compiled speeds into the flexibilty
of the Python environment.

1

http://arxiv.org/abs/1908.09753v1


2 Good and Berriman

2. Montage and Python

We created Python binary extensions of 38 of the modules in version 5 of Montage.
The process involved transforming the code into a C library, with driver code fully sep-
arated to reproduce the calling sequence of the command-line tools; and then adding
Python and C linkage code with the Cython library, which acts as a bridge between gen-
eral C libraries and the Python interface. A uniform build across Linux platforms was
achieved by compiling with a Docker container built for CentOS 5.11, which ensures
consistent use of system-level functionality across all flavors of Linux.

The extensions have been packaged as "MontagePy" and it forms part of Version
6 of Montage, released on November 12, 2018. The package is self-contained: no
additional Python tools are required to use it, although standard Python packages are
valuable in examining results. A consequence of the development is that Montage can
now be used as a toolkit and as a library in C, as well as under Python.

MontagePy has been developed for Python 2 and 3, but has been most thoroughly
tested under Python 3.6. The package has been delivered to the Python Package In-
dex (PyPI) repository, and can therefore be installed with the pip package manager
via the command “pip install MontagePy”. The package is available on-line as .whl
files for Mac OS X and Linux distributions at http://montage.ipac.caltech.
edu/docs/montagePy-UG.html for those wishing to install it directly. The C code
is available in GitHub at https://github.com/Caltech-IPAC/Montage. Montage
is freeely available and is attached with a BSD 3-clause license.

To assist users in processing images with Montage in Python, we have delivered a
set of Jupyter notebooks that show how to use each component, and compares usage in
Python with that in C. The Jupyter notebooks are available for download at https://
github.com/Caltech-IPAC/MontageNotebooks, and they can be viewed without
downloading at http://montage.ipac.caltech.edu/MontageNotebooks.

3. Using Montage to Build A Mosaic In Python

The notebooks referenced above contain an example of end-to-end processing of FITS
images to create a 1◦ x 1◦ mosaic of M17 in the 2MASS J-band. This section sum-
marizes the steps in that notebook, which includes creating the geometry of the mosaic
image, reprojecting the raw images to the required output projection, modeling the sky
backgrounds and correcting the images for them. It assumes that directories have been
set up to hold the raw data, the reprojected images, background differences between
images, images with background corrections applied, and a working directory for the
mosaicked images.

• Define the parameters of a 1◦ x 1◦ output mosaic of M17 the 2MASS J band, as
well as working directory for the data: location = ’M 17’, size = 1.0,
and dataset = ‘2MASS J’

• Create the "template header," a text file that contains the WCS parameters speci-
fying the geometry of the mosaic on the sky; file this will be written to the FITS
header of the mosaic.
rtn = mHdr(location, size, size, ‘region.hdr’)



Image Processing in Python With Montage 3

• Download the input data for the mosaic and put them in the "raw". These can
equally well already be on a local drive or be acquired through other on-line
services.
rtn = mArchiveDownload(dataset, location, size, ‘raw’)

• Create a table of metadata of the input files in the "raw" directory
rtn = mImgtbl(‘raw’, ‘rimages.tbl’)

• Reproject the input files to the required output specification
rtn = mProjExec(‘raw’, ‘rimages.tbl’, ‘region.hdr’, projdir=’projected’,

quickMode=True)

• The sky background varies between images and must be rectified as far as is
possible to a common level across all images. Montage computes the minimum
adjustments needed to make to the individual image backgrounds to bring them
all in line with each other; usually this is an offset with a slope. There are several
steps to applying the corrections, itemized separately below

– Create a metadata tablefo for the reprojected images
rtn=mImgtbl(‘projected’, "pimages.tbl’)

– Use this metadata table to calculate the overlap area between images
rtn = mOverlaps(‘pimages.tbl’, ‘diffs.tbl’)

– Calculate the differences between images and perform fits to them
rtn = mDiffFitExec(‘projected’, ‘diffs.tbl’, ‘region.hdr’,

‘diffs", ‘fits.tbl’

– Use the fitted images to generate the background model, a global mimimum
difference which results in a set of corrections to each image:
rtn = mBgModel(‘pimages.tbl’, ‘fits.tbl’, ‘corrections.tbl’)

– Apply the background corrections to each image
rtn = mBgExec(‘projected’, ‘pimages.tbl’, ‘corrections.tbl’,

‘corrected’)

– Create a metadata table of the background corrected images
rtn = mImgtbl(‘corrected’, ‘cimages.tbl’)

• Co-add the reprojected, backgorund corrected images to create the final mosaic
rtn = mAdd(‘corrected’, ‘cimages.tbl’, ‘region.hdr’, ‘mosaic.fits’

)

• Make a .pngrepresentation of the mosaic for visualization:
rtn = mViewer(‘-ct 1 -gray mosaic.fits -2s max gaussian-log -out

mosaic.png’, "", mode=2)

The mosaic created by this process is shown in Figure 1.
The mViewer tool referenced above implements an innovative adaptive histogram

equalization algorithm, which, among other things, optimizes the definition of faint
structures and mid-brightness level structure (Berriman & Good 2017). As well as
gray scale “png” representations such as those in Figure 1, it can generate multi-color
images, and can generate complex sky coverage maps, as in Collins et al. (2018).



4 Good and Berriman

Figure 1. A 1◦ x 1◦ background corrected mosaic of M17 in the 2MASS J-band,
created with the MontagePy package in Python 3.6

Acknowledgments. Montage is funded by the National Science Foundation under
Grant Numbers ACI-1440620 and ACI-1642453, and was previously funded by the
National Aeronautics and Space Administration’s Earth Science Technology Office,
Computation Technologies Project, under Cooperative Agreement Number NCC5-626
between NASA and the California Institute of Technology.

References

Berriman, G. B., & Good, J. C. 2017, Publications of the Astronomical Society of the Pacific,
129, 058006

— 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
10707, 1070707

Collins, K. A., Collins, K. I., Pepper, J., Labadie-Bartz, J., Stassun, K. G., Gaudi, B. S., Bayliss,
D., Bento, J., COLÓN, K. D., Feliz, D., James, D., Johnson, M. C., Kuhn, R. B., Lund,
M. B., Penny, M. T., Rodriguez, J. E., Siverd, R. J., Stevens, D. J., Yao, X., Zhou, G.,
Akshay, M., Aldi, G. F., Ashcraft, C., Awiphan, S., BaÈŹtürk, Ö., Baker, D., Beatty,
T. G., Benni, P., Berlind, P., Berriman, G. B., Berta-Thompson, Z., Bieryla, A., Bozza,
V., Calchi Novati, S., Calkins, M. L., Cann, J. M., Ciardi, D. R., Clark, I. R., Cochran,
W. D., Cohen, D. H., Conti, D., Crepp, J. R., Curtis, I. A., D’Ago, G., Diazeguigure,
K. A., Dressing, C. D., Dubois, F., Ellingson, E., Ellis, T. G., Esquerdo, G. A., Evans,
P., Friedli, A., Fukui, A., Fulton, B. J., Gonzales, E. J., Good, J. C., Gregorio, J., Gu-
musayak, T., Hancock, D. A., Harada, C. K., Hart, R., Hintz, E. G., Jang-Condell, H.,
Jeffery, E. J., Jensen, E. L. N., Jofré, E., Joner, M. D., Kar, A., Kasper, D. H., Keten, B.,
Kielkopf, J. F., Komonjinda, S., Kotnik, C., Latham, D. W., Leuquire, J., Lewis, T. R.,
Logie, L., Lowther, S. J., Macqueen, P. J., Martin, T. J., Mawet, D., Mcleod, K. K., Mu-
rawski, G., Narita, N., Nordhausen, J., Oberst, T. E., Odden, C., Panka, P. A., Petrucci,
R., Plavchan, P., Quinn, S. N., Rau, S., Reed, P. A., Relles, H., Renaud, J. P., Scarpetta,
G., Sorber, R. L., Spencer, A. D., Spencer, M., Stephens, D. C., Stockdale, C., Tan,
T.-G., Trueblood, M., Trueblood, P., Vanaverbeke, S., Villanueva, J., Steven, Warner,
E. M., West, M. L., Yalçınkaya, S., Yeigh, R., & Zambelli, R. 2018, AJ, 156, 234


