Journal article Open Access

Verilog-A model of ferroelectric memristors dedicated to neuromorphic design

Charly Meyer; André Chanthbouala; Sören Boyn; Jean Tomas; Vincent Garcia; Manuel Bibes; Stephane Fusil; Julie Grollier; Sylvain Saighi


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3377118</identifier>
  <creators>
    <creator>
      <creatorName>Charly Meyer</creatorName>
      <affiliation>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</affiliation>
    </creator>
    <creator>
      <creatorName>André Chanthbouala</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Sören Boyn</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Jean Tomas</creatorName>
      <affiliation>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</affiliation>
    </creator>
    <creator>
      <creatorName>Vincent Garcia</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Manuel Bibes</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Stephane Fusil</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Julie Grollier</creatorName>
      <affiliation>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</affiliation>
    </creator>
    <creator>
      <creatorName>Sylvain Saighi</creatorName>
      <affiliation>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Verilog-A model of ferroelectric memristors dedicated to neuromorphic design</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Verilog-A model</subject>
    <subject>ferroelectric memristor</subject>
    <subject>neuromorphic</subject>
    <subject>spiking neural network</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-12-12</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3377118</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/ICECS.2018.8618054</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ulpec-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <version>1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Artificial neural networks (ANN) are well known for performing Recognition, Data mining and Synthesis (RMS) tasks. However, the most famous ANNs are software implemented on computers that never take into account the power consumption management. Chip designers are aiming at low-power consumption by developing the neuromorphic engineering field. The goal is to design and produce neuralinspired architectures allowing energy-efficient computation systems. One decade ago, neuromorphic engineering had a renewal of interest, in particular due to the unveiled memristive devices. Indeed, memristors own all the features necessary in order to play the role of plastic synapses in ANNs. Among all memristive technologies, ferroelectric devices present an important advantage for low power systems: their high resistance which implies low current. In this paper, we will present a Verilog-A model of ferroelectric memristors. This model is based on measurements and therefore takes into account the variability of devices in terms of RON, ROFF and switching characteristics. This realistic model will be helpful for designing neuromorphic systems based on these devices. Finally, we will present some Cadence simulations of learning in small neural networks composed of CMOS neurons and memristive synapses.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/732642/">732642</awardNumber>
      <awardTitle>Ultra-Low Power Event-Based Camera</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
80
74
views
downloads
Views 80
Downloads 74
Data volume 31.8 MB
Unique views 72
Unique downloads 62

Share

Cite as