Journal article Open Access

Verilog-A model of ferroelectric memristors dedicated to neuromorphic design

Charly Meyer; André Chanthbouala; Sören Boyn; Jean Tomas; Vincent Garcia; Manuel Bibes; Stephane Fusil; Julie Grollier; Sylvain Saighi


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3377118">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3377118</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3377118"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Charly Meyer</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>André Chanthbouala</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sören Boyn</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jean Tomas</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Vincent Garcia</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Manuel Bibes</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Stephane Fusil</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Julie Grollier</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau, 91767, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sylvain Saighi</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Laboratoire IMS, UMR CNRS 5218, University of Bordeaux, Talence, F-33405, France</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Verilog-A model of ferroelectric memristors dedicated to neuromorphic design</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2018</dct:issued>
    <dcat:keyword>Verilog-A model</dcat:keyword>
    <dcat:keyword>ferroelectric memristor</dcat:keyword>
    <dcat:keyword>neuromorphic</dcat:keyword>
    <dcat:keyword>spiking neural network</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/732642/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2018-12-12</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3377118"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3377118</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/ICECS.2018.8618054"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/ulpec-h2020"/>
    <owl:versionInfo>1</owl:versionInfo>
    <dct:description>&lt;p&gt;Artificial neural networks (ANN) are well known for performing Recognition, Data mining and Synthesis (RMS) tasks. However, the most famous ANNs are software implemented on computers that never take into account the power consumption management. Chip designers are aiming at low-power consumption by developing the neuromorphic engineering field. The goal is to design and produce neuralinspired architectures allowing energy-efficient computation systems. One decade ago, neuromorphic engineering had a renewal of interest, in particular due to the unveiled memristive devices. Indeed, memristors own all the features necessary in order to play the role of plastic synapses in ANNs. Among all memristive technologies, ferroelectric devices present an important advantage for low power systems: their high resistance which implies low current. In this paper, we will present a Verilog-A model of ferroelectric memristors. This model is based on measurements and therefore takes into account the variability of devices in terms of RON, ROFF and switching characteristics. This realistic model will be helpful for designing neuromorphic systems based on these devices. Finally, we will present some Cadence simulations of learning in small neural networks composed of CMOS neurons and memristive synapses.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/4.0/legalcode">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/3377118"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/732642/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">732642</dct:identifier>
    <dct:title>Ultra-Low Power Event-Based Camera</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
80
74
views
downloads
Views 80
Downloads 74
Data volume 31.8 MB
Unique views 72
Unique downloads 62

Share

Cite as