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Abstract

No campo da previsão de séries temporais os métodos mais difundidos baseiam-se em
predição por ponto. Esse tipo de previsão, no entanto, tem um sério inconveniente:
ele não quantifica as incertezas inerentes aos processos naturais e sociais nem outras
incertezas decorrentes da captura e processamento dos dados. Por isso nos últimos anos os
métodos de previsão intervalar e probabilística têm ganhado a atenção dos pesquisadores,
particularmente nas ciências climáticas e na econometria. Mas outro inconveniente vem
do fato de grande parte dos métodos de previsão probabilística serem métodos de caixa
preta e demandarem simulações estocásticas ou ensembles de métodos preditivos que são
computacionalmente despendiosos.

Por outro lado, o volume (número de registros) e a dimensionalidade (número de variáveis)
dos dados vêm alcançando magnitudes cada vez maiores, graças ao barateamento dos
dispositivos computacionais de captura e armazenamento de dados, um fenômeno conhecido
como Big Data. Tais fatores impactam diretamente no custo de treinamento e atualização
dos modelos e, para séries temporais com essas características, a escalabilidade tornou-se
um fator decisivo na escolha dos métodos preditivos.

Nesse contexto emergem os métodos de Séries Temporais Nebulosas, que vêm em crescente
expansão nos últimos anos dado os seus resultados acurados, a facilidade de implementação
dos métodos, o seu baixo custo computacional e a interpretabilidade de seus modelos.
Os métodos de Séries Temporais Nebulosas têm sido utilizados em áreas como previsão
de demanda energética, indicadores e ativos de mercado, turismo entre outras. Mas há
lacunas na literatura de tais métodos referentes a escalabilidade para grandes volumes de
dados e previsão probabilística e por intervalos.

A presente tese propõe novos métodos escaláveis de Séries Temporais Nebulosas e investiga
a aplicação desses modelos na previsão por ponto, intervalar e probabilística, para uma ou
mais variáveis e para mais de um passo à frente. Os parâmetros e hiperparâmetros dos
métodos são discutidos e são apresentadas alternativas de ajuste fino dos modelos. Os
métodos propostos são então comparados com as principais técnicas de Séries Temporais
Nebulosas e outros modelos estatísticos utilizando dados ambientais e do mercado de ações.
Os modelos propostos apresentaram resultados promissores tanto nas previsões por ponto
quanto nas previsões por intervalo e probabilísticas e com baixo custo computacional,
tornando-os úteis para um vasta gama de aplicações.

Palavras-chave: Séries Temporais Nebulosas, Previsão Probabilística, Escalabilidade, Pre-
visão por Intervalo.





Abstract

In the field of time series forecasting, the most known methods are based on point
forecasting. However, this kind of forecasting has a serious drawback: it does not quantify
the uncertainties inherent to natural and social processes neither other uncertainties
caused by the data gathering and processing. Because this in last years the interval and
probabilistic forecasting methods have been gaining more attention of researches, specially
on environmental and economical sciences. But these techniques also have their own issues
due to the methods being black-boxes and requiring stochastic simulations and ensembles
of multiple forecasting methods which are computationally expensive.

On the other hand, the data volume (number of instances) and dimensionality (number
of variables) have reached magnitudes even greater, due to the commoditizing of the
capturing and storing computational devices, in a phenomenon known as Big Data. Such
factors impact directly on the model’s training and updating costs, and for time series
with Big Data characteristics, the scalability became a decisive factor in the choosing of
predictive methods.

In this context the Fuzzy Time Series (FTS) methods emerge, which have been growing in
recent years due to their accurate results, easiness of implementation, low computational
cost and model explainability. The Fuzzy Time Series methods have been applied to
forecast electric load, market assets, economical indicators, tourism demand etc. But there
is a lack on FTS literature regarding interval and probabilistic forecasting.

This thesis proposes new scalable Fuzzy Time Series methods and discusses its application
to point, interval and probabilistic forecasting of mono and multivariate time series, for one
to many steps ahead. The parameters and hyper-parameters are discussed and fine tunning
alternatives are presented. Finally the proposed methods are compared with the main
Fuzzy Time Series techniques and other literature approaches using environmental and
stock market data. The proposed methods obtained promising results on point, interval
and probabilistic forecasting and presented low computational cost, making it useful for a
wide range of applications.

Keywords: Fuzzy Time Series, Probabilistic Forecasting, Interval Forecasting, Scalable
Models.





Preface

“From my part I know nothing with any certainty, but the sight of the stars
makes me dream.”

— Vincent Van Gogh

When Prof. Fred suggested me to study Fuzzy Time Series - I need to confess
- I became excited. Because one of the most fascinating issues on scientific research
is to deal with uncertainty. Uncertainty is pervasive, omnipresent and self propagated.
Pliny the Elder, early on first century of Cristian Age, stated that “the only certainty
is the uncertainty”. The mankind expanded the boundaries of the knowledge and some
uncertainties could be reduced or eliminated. Others, however, remain irreducible. And
here we are!

I always felt uncomfortable with the mechanistic and deterministic view of the
world. The advances of science have forced us to assume some limitations of our knowledge
and accept the separation between our known-knowns, the known-unknowns and even of
the unknown-unknowns. We know now that we live in a fuzzy and probabilistic world.

And until here we just talked about the present and the past. Things get even more
interesting when we try to look ahead and predict the future. If we can’t measure accurately
some natural, social and economical processes, due to instrumentation limitations for
example, and these processes are also intrinsically non-deterministic, these uncertainties
combined make the forecasting task complex and barely precise.

The fog of uncertainty becomes yet more dense as the forecasting horizon goes
away: the forecasting methods need to into take account all uncertainties on present to
forecast ranges of possibilities on future. When we look more than one step in the future
the forecasting method should consider all possible combinations in the range of variation
of each past step - and this increases the complexity and the output uncertainty.

With this research problem in hand, many ideas in mind, and a lot of excitement,
we expect to give some contributions to this field. We focused on non-deterministic
processes and assume that all measurements are not completely accurate, every single
value actually represents a fuzzy neighborhood. We propose to bring the fuzzy time series
to the domain of probabilistic forecasting.



I hope you enjoy this work as I enjoyed dreaming and implementing it.
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Ã the linguistic variable for univariate Y
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model

|M| the model parsimony, the amount of parameters of the model

H ∈ N+ The forecasting horizon, i.e, the number of steps to predict ahead
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Chapter 1

Introduction

“In the strict formulation of the law of causality - if we know the present, we
can calculate the future - it is not the conclusion that is wrong, but the
premise.”

— Werner Heisenberg

A significant part of scientific applications demand the forecasting of natural,
social and economical processes and there is an extensive literature on forecasting meth-
ods and models. Such methods are also preceded by many processes as instrumentation,
measurement, storing, aggregation, etc. However, a great recurrent problem is how to
deal with the uncertainty generated or captured in each step of this task, and measure
how it spreads. Makridakis and Taleb [2009] stated that “Statistical models underestimate
uncertainty, sometimes catastrophically”, by assuming, for example, that events are inde-
pendent, forecasting errors are tractable, the variance of forecasting errors is finite, known
and constant.

In these natural and social processes the uncertainty can be intrinsic or extrinsic
and is classified, by Georgescu [2014], in two categories: the epistemic uncertainty and the
ontological uncertainty. The ontological uncertainty represents the intrinsic and irreducible
uncertainty of a process defined basically as the non-deterministic behavior – randomness
and stochasticity – that usually is modeled by the probability theory.

Contrarily, the epistemic uncertainty represents the extrinsic and reducible sources
of uncertainty on a process like vagueness, lack of information and imprecision due to
measurement errors, sensor calibration, rounding and limitations of numerical precision,
among others. Another possibility is the conversion of continuous processes to discrete
processes. This conversion is not lossless and some uncertainty is imputed on converted
data. The epistemic uncertainty can be modeled by the fuzzy theory.

This is the case of data preprocessing tasks, for example. Very often time series
datasets need to be aggregated by some time resolution (daily, hourly, etc) and this
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Figure 1 – Candlestick chart for IBOVESPA. Source: Google Finance1

aggregation also introduces the epistemic uncertainty on data. A good example are the
financial time series that summarize all transactions of a whole day in four numbers:
opening, minimum, maximum and closing prices. This method is an attempt to represent
the volatility (e. g. the uncertainty) of the price value inside a certain time window and is
also a tool for detecting patterns on data, the Candlestick Graph techniques, as shown
in Figure 1. Sometimes the aggregation is even more aggressive and all the values are
summarized into one, the average or median value, hiding all information about the
volatility. When this data is used as input for fitting a forecasting model the extrinsic
uncertainty is introduced.

The forecasting methods propagate the input uncertainties on their outputs and
compromise the reliability of the forecast. Despite these points, the majority of forecasting
methods are concerned with one step ahead point forecasting without output uncertainty
measures. When the many steps ahead forecasting is considered, the uncertainty grows yet
more and affects the accuracy and reliability of models. This effect becomes even worst as
the forecasting horizon becomes wider.

This fact led to the development of methods for Probabilistic Forecasting Gneiting
and Katzfuss [2014] and Interval Forecasting Chatfield [1993], to deal with forecasting
uncertainty by estimating distributions of possible values instead of a unique point forecast.
However, traditional methods of probabilistic forecasting require the use of parametric
models with distribution assumptions, as in Bayesian Inference, or costly estimation
techniques and Monte-Carlo simulations. Probabilistic forecasting has been used in areas
such as weather forecasting (Fraley et al. [2011] and Leutbecher and Palmer [2008]) eletric
load forecasting (Hong and Fan [2016], Hong et al. [2016] and Liu et al. [2015]), wind
power generation prediction (Pinson et al. [2006] and Netto et al. [2016]) and hydrological
forecasting (Laio and Tamea [2007]).

Side by side with the uncertainty representation in time series forecasts, some

1 https://www.google.com/financeq=INDEXBVMF%3AIBOV&ei=zHz2WOmMKODrep_bgbAI. Access in
18/04/2017

https://www.google.com/financeq=INDEXBVMF%3AIBOV&ei=zHz2WOmMKODrep_bgbAI
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other factors became prevailing in the evaluation of predictive methods, such as Big Data
scalability and model explainability. The Big Data phenomenon emerged in the late 2000s
decade Lynch [2008] calling attention to new demands on data analysis brought by the
growth of data volume, dimensionality and variety. This revolution was possible due to the
advances on the technologies of data capturing and storage, as well as its commoditizing,
allowing the distributed management of amounts of data never seen before.

But traditional forecasting methods, and even some newer ones, were not designed
to deal with such high volume of data. The most critical issues were the high dimensionality
(dozens of hundreds of attributes) and volume (hundreds of millions or billions of samples)
Qiu et al. [2016]. Such data volume cannot be grounded on a single machine memory and
demands a distributed architecture of storage and processing. New technologies emerged
to tackle these issues, for instance the Map Reduce based frameworks Dean and Ghemawat
[2008], a divide-and-conquer approach which is the basis of Hadoop clusters White [2012],
where the processing units also act as storage units of the data subsets using commodity
and cheap hardware assets.

The Big Data issues do not stop on data volume and, indeed, the velocity and
variability of the data must be seriously considered when developing forecasting mod-
els. Many sources of data have non-stationary behaviors, meaning that their statistical
properties may change along the time. Some models are time-variant, they are specially
designed to be self-adaptable and evolve as the data change. But the majority of the
conventional methods are time-invariant and need to be retrained periodically depending
on the variability of the data, what can be problematic given the computational cost of
the training and adapting procedures. Yet more critical is the data with Concept Drifts
[Gama et al., 2014], which have high volume with high velocity and need to be adaptable
to new behaviors in feasible time.

Another traditionally neglected aspect of the forecasting methods also started
to gain more attention in recent years: the explainability. With the expansion of the
machine learning methods enabled to tackle Big Data, another issues came up to the light:
black-box methods started to find legal barriers or adoption resistance due to its lack of
transparency and auditability [Leslie, 2019, EC AI HLEG, 2019]. Diversely, the white-box
methods can help in the knowledge extraction and simplification of complex temporal
patterns, besides being easily auditable.

The exposed scenario favored the rising of the Fuzzy Time Series (FTS) methods
Song and Chissom [1993b], which have been drawing more attention and relevance in recent
years due to many studies reporting its good accuracy compared with other models Singh
and Prabakaran [2008]. Fuzzy Time Series are soft-computing methods that produce data-
driven, non-parametric, simple, computationally cheap and readable models for time series
analysis and forecasting. FTS methods are also an approach to deal with the epistemic
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uncertainty, as on the time-aggregation case of the financial time series. The fuzzyfication
of data gives a more flexible representation to the individual measures, embracing the
range of possible value fluctuations not covered by the single values.

Despite the great improvements published in the FTS literature in the recent years,
there are still some notable lacks. Interval and probabilistic forecasting, specially for many
steps ahead, are not properly explored, besides the absence of scalable methods to tackle
big multivariate time series. There is, indeed, a plethora of soft-computing forecasting
methods. But very few of them are flexible enough to incorporate scalable point, interval,
probabilistic and multivariate forecasting, with one to many steps ahead, for univariate
and multivariate time series. This research opportunity is exploited in this work by the
proposition of new FTS methods and their subsequent applications on several case studies,
including financial, environmental and energy time series.

1.1 Objectives

The main goal of this thesis is to develop a scalable probabilistic forecasting
approach based on the Fuzzy Time Series methods, providing a flexible computational
framework for applications with uncertainties. Specific goals are divided in:

• Identify the strengths and weaknesses of the main FTS approaches presented in
literature;

• Identify extension opportunities on known probabilistic forecasting methods;

• Introduce the Probabilistic Weighted Fuzzy Time Series, a new method family that
exploits uncertainties on datasets to capture time series patterns and translate them
into the rule-based knowledge system (the Probabilistic Weighted Fuzzy Logical
Relationship Groups);

• Improve PWFTS scalability in order to enable it to deal with big time series by
proposing a distributed processing design with the Map/Reduce paradigm;

• Extend the PWFTS method to enable multivariate time series using Fuzzy Informa-
tion Granules.

1.2 Work structure

This thesis is organized as follows:

• Chapter 2 - Fuzzy Time Series presents a contextual background on Fuzzy
Time Series methods and discusses the most relevant methods in literature;
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• Chapter 3 - Probabilistic Forecasting introduces the probabilistic forecasting
concepts and main techniques, reviewing the surrounding literature. In Section 3.3
the Interval Fuzzy Time Series method is proposed for binding the fuzzy uncertainty
on forecasts, and in Section 3.5 the EnsembleFTS method is proposed to probabilistic
forecasting;

• Chapter 4 - Probabilistic Weighted Fuzzy Time Series introduces the Prob-
abilistic Fuzzy Time Series method for generating the Probabilistic Weighted Fuzzy
Temporal Pattern rules and a method to generate one step ahead probabilistic fore-
casts; in Section 4.3.2 the previous method is extended to create prediction intervals
and in Section 4.3.3 a simple heuristic to produce point forecasts is presented .
Section 4.4 presents extensions for many steps ahead forecasting and high-order
models. The characteristics and parameters of the methods are discussed in Section
4.5;

• Chapter 5 - Scalability And Hyperparameter Optimization proposes a dis-
tributed approach for PWFTS, based on Map/Reduce paradigm and computational
clusters, enabling it to deal with big time series. In Section 5.3 the Distributed Evolu-
tionary Hyperparameter Optimization (DEHO) is proposed, employing evolutionary
algorithms with the distributed processing to improve the performance.

• Chapter 6 - Multivariate Models proposes an extension for multivariate time
series using Fuzzy Information Granules (FIG) and an incremental universe of
discourse partitioner. With this extension PWFTS can be used for multivariate
forecasting in a Multiple Input/Multiple Output (MIMO) design or monovariate
forecasting in a Multiple Input/Single Output(MISO) design.

• Chapter 7 - Conclusion the findings are summarized and overall conclusions are
given, as well as the contributions, known limitations and future investigations.

1.3 Main contributions

This research presents contributions to the Forecasting and Fuzzy Time Series
research fields, whose the most important are summarized below:

• development of the Probabilistic Weighted Fuzzy Time Series - PWFTS, which is
a new non-parametric, data driven and highly accurate forecasting method, the
first FTS method in the literature that integrates point, interval and probabilistic
forecasting in the same model, for one to many steps ahead;
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• a new representation method for fuzzy temporal rules, with weights on the precedent
and the consequent of the rules, reflecting its a priori and a posteriori empirical
probabilities and aiding with model explainability;

• new defuzzyfication methods capable to produce probability distributions, prediction
intervals and point forecasts and multivariate output using Fuzzy Information
Granules (FIG);

• the pyFTS library Silva et al. [2018]2 for Python programming language, an open
and free framework to facilitate the development of new models and help on research
reproducibility;

• application of the proposed methods in the forecasting of renewable energy and
environmental processes;

2 http://pyfts.github.io/pyFTS/

http://pyfts.github.io/pyFTS/
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Chapter 2

Fuzzy Time Series

“There’s nothing worst than a sharp image of a fuzzy concept”

— Ansel Adams

This chapter aims to introduce the Fuzzy Time Series methods and review the
relevant literature, offering a soft background on the key concepts and models on this
research field.

The name Fuzzy Time Series (FTS) can be used to refer to F , a time series
composed by fuzzy linguistic terms, or the family of non-parametric forecasting methods
introduced by Song and Chissom [1993b] based on Fuzzy Set theory Zadeh [1965]. These
methods are easy to implement and very flexible, affording ways to deal with numeric
and non-numeric data. FTS methods have been commonly employed in forecasting of
university enrollments (Song and Chissom [1993b], Song and Chissorn [1994], Ismail and
Efendi [2011]), stock markets (Sadaei et al. [2016b], Lee et al. [2013a], Chen [2014], Sun
et al. [2015], Talarposhti et al. [2016], Efendi et al. [2013]), tourism (Lee and Javedani
[2011]), electric load (Ismail et al. [2015], Sadaei et al. [2017]), seasonal time series [Song
[1999], Chang [1997]] among many others. There are still some gaps in FTS methods
(Sadaei [2013] and Georgescu [2010]) related with methodological problems but many of
them have been approached in more recent studies Sadaei et al. [2016a]. There are several
categories of FTS methods whose main features and its variations can be seen in Figure 2,
and will be discussed in the remaining sections.

The most important categories of FTS methods are related with their the time
behavior. The time invariant models are the ones used when the Universe of Discourse and
data behavior does not change with time, as in stationary time series. Non stationary time
series, in its turn, require time variant models as proposed in Song and Chissorn [1994]
and Wong et al. [2010]. This research is focused on time invariant models and hereinafter
all models discussed belongs to it. However, Time Variant models are not discarded for
future investigations.
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Figure 2 – A brief taxonomy of FTS methods

This chapter also focus only on monovariate and non Big Data time series. The
multivariate and Big Data methods will be discussed in the following chapters. In the next
section the main processes of the FTS are introduced and discussed.

2.1 Fuzzy Time Series common processes

The definition of Fuzzy Time Series, from Song and Chissom [1993b], starts with
a univariate time series Y ∈ R1, for t = 0, 1, ..., T , where the Universe of Discourse U is
delimited by the known bounds of Y , such that U = [min(Y ),max(Y )]. Upon U , k fuzzy
sets Aj , for j = 1..k, are defined and each one with its own membership function µAj

. F is
called a Fuzzy Time Series over Y if f(t) = µAj

(y(t)) is the collection of fuzzyfied values
of Y for j = 1..k and t = 0, 1, ..., T . The group of fuzzy sets Aj, for j = 1..k, can also be
understood as a Linguistic Variable Ã, and each fuzzy set Aj ∈ Ã is a linguistic value of
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Figure 3 – Generic time invariant Fuzzy Time Series training procedure and its components

Song and Chissom [1993a] proposed the first FTS methodology and the following
authors basically extended or modified some steps of the method. A generic method can
be extracted from the wide range of variations of FTS methods by splitting the FTS
approach in two main procedures, the training and forecasting methods. The training
method, illustrated in Figure 3, has the basic objective to create the linguistic variable Ã
and a knowledge representation of the time series dynamics. These two objects compose
the FTS modelM. The main components of this process are listed below:

Step 1 - Pre-processing: First, one or more pre-processing data transformations can be
applied to input data Y , responsible to reduce noise, detrending, or de-seasonalize,
or change the U , etc. Several methods contain these operators and their impact will
be discussed in detail in Section 2.6.

Step 2 - Partitioning: The most important process of the training is executed, the parti-
tioning. This process is responsible to split the universe of discourse U into k fuzzy
sets Aj, creating the linguistic variable Ã used to describe Y . There are many ways
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that the partitioning can be performed, and the most important are discussed in
Section 2.2.

Step 3 - Fuzzyfication: With the linguistic variable Ã the crisp data Y can be transformed
in a linguistic representation, the fuzzy time series F where each f(t) ∈ F is a
fuzzyfied version of y(t) ∈ Y . Details of the fuzzyfication are discussed in Section
2.3.

Step 4 - Knowledge Extraction and Representation: The second most important pro-
cess is the knowledge extraction. This process is responsible to induce the knowledge
modelM by performing a pattern recognition over F and learning the temporal
patterns between Ω lags, whose indexes are identified by L, and their consequent
ones. The most important learning algorithms and knowledge models are discussed
in Section 2.4.

Once the linguistic variable Ã is defined and the FTS modelM was learned, new
samples y(t) ∈ U can be presented to produce a forecast ŷ(t+ 1). The generic forecasting
procedure is illustrated in Figure 4, and its main components are listed below:

Step 1 - Pre-processing: First, one or more pre-processing and post-processing data
transformations can be applied to input sample y(t) (the data transformations are
discussed in Section 2.6).

Step 2 - Fuzzyfication: The fuzzyfication procedure follows the same schema of the training
procedure and it is discussed in Section 2.3.

Step 3 - Inference: The inference engine deeply depends on the knowledge model M.
Indeed, the learning algorithm, the knowledge model and the inference engine are
intrinsically correlated, and they are discussed in Section 2.4. The aim of the inference
process is to produce f(t+1), candidate fuzzy sets (and other additional information,
as weights) to represent the future crisp value y(t+ 1).

Step 4 - Deffuzyfication: The deffuzyfication process aims to transform the f(t + 1) to
a crisp numeric estimate ŷ(t + 1) for the real (but unknown) value y(t + 1). The
deffuzyfication usually also depends on the inference engine but there are common
methods discussed in Section 2.5. The present work extended the possibilities of
deffuzyfication to beyond of point forecasting, proposing methods for prediction
intervals I and probabilistic distributions P .

Step 5 - Post-processing: Finally, one or more post-processing data transformations can
be applied to output forecast ŷ(t + 1) (the data transformations are discussed in
Section 2.6).
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Figure 4 – Generic time invariant Fuzzy Time Series forecasting procedure and its compo-
nents

The main hyperparameters which affect these processes are listed in Table 1. The
selection of the values for these hyperparameters affects the training process and the
parameters of the model, including its accuracy and parsimony (the length of the model).
In the following sections each one of these processes are discussed in detail recurring to
the most relevant works in the FTS literature, while its strengths and drawbacks are
highlighted.

2.2 Universe of Discourse Partitioning

This process aims to split the Universe of Discourse U and to create the linguistic
variable Ã, composed by the fuzzy sets Aj , j = 1..k. This is the most important process of
the FTS approach and the following sections detail its main sub-processes and parameters.

2.2.1 Universe of Discourse U

The natural definition of the Universe of Discourse is U = [min(Y ),max(Y )],
but it is common that the upper and lower bounds be exceeded by a confidence margin.
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Alias Parameter Process

k ∈ N+ Number of partitions (fuzzy sets) Universe of Discourse Parti-
tioning

µ : U → [0, 1]
Membership function, measures the
membership of a value y ∈ U to a fuzzy
set

Universe of Discourse Parti-
tioning, Fuzzyfication

Π Partitioning method Universe of Discourse Parti-
tioning

α ∈ [0, 1]
the α-cut, the minimal membership
grade to take account on fuzzyfication
process

Fuzzyfication

Ω ∈ N+ Order, the number of lags Knowledge model
L ∈ Ω× N− Time lag indexes Knowledge model

Table 1 – Common hyperparameters for FTS methods

Then, it can be established as U = [l, u], with the lower bound as l = min(Y ) + ld, where
ld = min(Y ) · 0.2 (exceeding the original lower bound by 20%) and the upper bound as
u = max(Y ) + ud, where ud = max(Y ) · 0.2 (exceeding the original upper bound by 20%).

Even considering just time invariant methods in this work and a stationary time
series Y , it is natural that the testing U will be a little different from the training U ,
sometimes by a small fraction of the original values. Even on stationary processes the
presence of outliers cannot be discarded. The objective of these exceeding margins ld
and ud is to help in the fuzzyfication process of the forecasting procedure, in order to
accommodate fluctuations in the bounds of the known U .

2.2.2 Membership function µ

Once U has been defined, three hyperparameters will determine the creation of Ã:
the number of partitions k, the membership function µ and the partitioning scheme. The
membership function µ : U → [0, 1] defines how much a crisp value belongs to a fuzzy set,
in terms of the membership grade [0, 1]. Some options of fuzzy membership functions are
shown in Table 2, and simple partitioning using these functions are shown in Figure 5.
The real impact of the membership function on accuracy is low, it will be demonstrated
empirically later on this work, but the chosen of the correct µ can help in the readability
and explainability of the model.

Many other kinds of fuzzy sets were presented in the literature and new FTS
methods were developed using them, as instance Type 2 fuzzy sets [Huarng and Yu, 2005,
Bajestani and Zare, 2011], Hesitant fuzzy sets [Bisht and Kumar, 2016], non-stationary
fuzzy sets [Alves et al., 2018], etc. These fuzzy sets and the methods developed with them,
however, are considered out of the scope of this research.
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Name Parameters Definition

Singleton c, the central value µ(x, c) =

{
1 if x = c
0 if x 6= c

Triangular a: lower bound, b: mid-
point, c: upper bound µ(x, a, b, c) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b
c−x
c−b if b ≤ x ≤ c

0 if c ≥ x

Trapezoidal
a: lower bound, b: top-
left, c: top-right, d up-
per bound

µ(x, a, b, c, d) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b

1 if b ≤ x ≤ c
d−x
d−c if c ≤ x ≤ d

0 if d ≥ x

Gaussian m: midpoint, d: spread µ(x,m, d) = exp
(
− (x−d)2

2m2

)
Table 2 – Most common fuzzy membership functions

Figure 5 – UoD Partitioning using different membership functions

2.2.3 The number of partitions k

The selection of the hyperparameter k impact directly on the model accuracy and
parsimony, as discussed in Duru and Yoshida [2012]. The number of partitions impact on
the model parsimony directly and, for instance, given a rule model the maximum number
of rules is the cartesian product between the fuzzy sets Aj ∈ Ã for each order Ω.

There is a non-linear relationship between k and the model accuracy, a trade off
between specific accuracy (bias) and overall generalization (variance). A small value of k
will generate too few fuzzy sets to represent Y correctly, making the modelM underfit by
producing a gross generalization with simplistic patterns. A high value of k will generate
too much fuzzy sets, exceeding the needed to represent Y and makeing the model M
overfit by reproducing excessive specificities and small noisy fluctuations. The optimal
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number of k must be optimized for each problem, balancing the accuracy and the model
parsimony, since this last value affects the computational performance as the number of
parameters grows.

The impact of the U partitioning can also be seen by other perspectives: the
model human readability and model explainability. In his seminal work, Miller [1956]
stated that the human being, on average, can learn 7± 2 concepts. In other words, the
linguistic variable Ã to be reasonable for human understanding must have around this
number of fuzzy sets. But this, depending on the range of U and the behavior of Y , may
be a very small number of partitions. Otherwise, the explainability does not depend on
how much humans can learn fromM but how easily the forecastings produced can be
explained, as a white box model. In this last case the type of the knowledge representation
ofM has greater impact than the number of fuzzy sets in Ã.

A study of the linguistic characterization of time series can be found in Novák
[2016a]. using Fuzzy Transform (Perfilieva [2006]) to generate linguistic summaries of
time series. A study on mining information from fuzzyfied linguistic time series can be
found in Novák [2016b], where are presented the impacts of fuzzyfication on the knowledge
extraction.

2.2.4 The partitioning method - Π

The partitioning method will determine, for each fuzzy set, their length, midpoints
and bounds and also have impact on accuracy. The simplest partitioning scheme – the
division of the data range in k equal length intervals – is called Grid Partitioning and was
proposed in Song and Chissom [1993b]. In the Grid Partitioning, U is divided in k + 2

even intervals u1, u2, ..., uk whose midpoints are c1, c2, ..., ck. Then with these k intervals
k overlapped fuzzy sets A1, A2, ..., Ak are defined using triangular membership functions
whose parameters are cj−1, cj, cj+1 for each j = 2..k − 1.

Some works use simple heuristics to define k or even the lengths of the fuzzy sets.
Huarng [2001] use a grid partitioning approach, but it proposes an empirical method to
find the ideal number of partition lengths according to the magnitude of U , in a work that
was the first to deeply discuss the impact of the partitioning on FTS forecast accuracy.
Several other works used this or define other simple heuristic for U partitioning, see for
instance Chang [1997], Huarng and Yu [2005], Rubio et al. [2016], Cheng and Chen [2018].

U partitionings where the fuzzy sets have unequal lengths are also present in the
literature. Cheng et al. [2006] employ a fixed value of k but the entropy of data that defines
the best midpoints for the fuzzy sets, which also use trapezoidal membership functions.
This method is known by Entropy Partitioning and is also employed in Cheng et al. [2008b]
and Chen et al. [2014]. The statistical approaches yet count with Ismail et al. [2015], which
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Figure 6 – Partitioning using different approaches within the same sample

determine the length of the fuzzy sets proposing a method based on data quantiles, and
Yang et al. [2017a] which use a Chi-Square distribution do identify the fuzzy sets number
and lengths.

Clustering techniques are used in several works, as Fuzzy C-Means in Li et al.
[2008], Askari and Montazerin [2015], Bas et al. [2015], Sun et al. [2015], Yolcu and Lam
[2017], Fuzzy K-Medoids in Dincer and Akkuş [2018], Self Organizing Maps in Bahrepour
et al. [2011], and other methods as in Saberi et al. [2017] and Bose and Mali [2017].

The use of metaheuristics, especially of nature-inspired optimization approaches,
is also spread in the literature. Particle Swarm Optimization is used by Davari et al. [2009],
Kuo et al. [2009], Hsu et al. [2010], Huang et al. [2011], Zhang et al. [2018b], Genetic
Algorithms in Chen and Chung [2006], Enayatifar et al. [2013], Zhang et al. [2018a], and
other less known methods such as Harmony Search in Talarposhti et al. [2016], Jiang et al.
[2017] and Imperialist Competitive in Sadaei et al. [2017].

A sample of different partitioning schemes on the same data can be seen in Figure
6. The partitioning method has influence on the model accuracy, parsimony and readability
but its computational cost must be also considered. The Grid Partitioning gives a uniform
distribution of the fuzzy sets over U but, if in one hand it is computationally cheaper,
however it may not represent the importance of some data regions accordingly. It is
probable that some specific regions of U have more variance than others, depending on Y
behavior, and some regions may be better represented having more fuzzy sets than others.
It also can not be denied that some approaches are computationally expensive, as the
clustering and metaheuristics ones, and in Big Data scenarios this may be prohibitive.
Despite the fact that the Grid Partitioning should be always the first approach to start
with, due to its simplicity and small cost, the fine tuning of FTS models can not exclude
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more sophisticated methods.

Once the linguistic variable Ã is created, the fuzzyfication process can be started.
This process and its parameters are discussed in the next section.

2.3 The Fuzzyfication Process

This process aims to transform the crisp numerical time series Y into a linguistic
time series F , also known as fuzzy time series. There are few, but important, variations of
the fuzzyfication method.

The initial FTS methods, for instance Song and Chissom [1993b], Chen [1996]
and Yu [2005], only considered one fuzzy set in fuzzyfication process, for instance y(t) ∈ Y ,
the one with the greatest membership grade. More specifically:

f(t) = Aj | µAj
(y(t)) = max{µA1(y(t)), . . . , µAk

(y(t))} (2.1)

This method helps to control overfit, reducing the number of spurious patterns
generated by low membership grades fuzzy sets. However, it can also contribute to underfit
the learning by eliminating fuzzy sets which are very close to the maximum grade. It
is possible to deduce that some relevant information can be lost when several minor
membership grades are discarded.

A contrasting method is the holistic fuzzyfication, where all the membership
grades, despite their magnitude, are considered. The fuzzyfied value f(t) is the the vector
of the y(t) membership grades with respect to each Aj ∈ Ã:

f(t) = [µA1(y(t)), . . . , µAk
(y(t))] (2.2)

The holistic fuzzyfication can help to the learning overfit, because even very small
membership grades, which can be considered insignificant for that fuzzy set, are considered.
An intermediate approach can be achieved by using the α-cut hyper-parameter. The
α-cut represents the minimal value of the membership grade that will be accepted in
fuzzyfication, while membership values below the α-cut will not be considered.

f(t) = Aj | µAj
(y(t)) ≥ α ∀Aj ∈ Ã (2.3)

The α-cut makes the sensibility of the fuzzyfication process adjustable and the
user can control it, unlike the maximum membership and the holistic methods. The
fuzzyfication method is significant in the search of the training best fit, controlling the
accuracy and models parsimony. Particularly, the method of Carvalho Jr and Costa Jr
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[2017] makes an explicit use of the α-cut parameter and conduct a comprehensive study of
its impact on the method accuracy.

Once the crisp data Y is converted to the fuzzy time series F the process of
knowledge extraction and representation is ready to start. This process and its variations
are discussed in the next section.

2.4 Knowledge Extraction, Representation and

Inference

This section aims to investigate the several approaches in the literature that were
used to learn and represent temporal patterns found on the fuzzyfied data F . Looking
back to Figures 3 and 4, the fuzzy sets and the fuzzyfication process may be interpreted
as a feature extraction layer that precedes a pattern recognition and inference layer, that
is finally succeeded by a reconstruction layer – the deffuzyfication process. Besides small
variations, the fuzzyfication and deffuzyfication do not differ among the methods. But the
way these methods learn and store the patterns suffer a strong variation among them.

By far, most of FTS methods make use of simple heuristics to learn the temporal
patterns from the fuzzyfied data and store the learned patterns using rules or matrices.
But it can not be denied that there are many other backends for the knowledge extraction
and representation in FTS models: metaheuristics, neural networks, fuzzy cognitive models,
hybrid approaches with traditional statistical models, etc. In the following sections the
most relevant methods with their variations will be discussed.

2.4.1 The Order Ω, Lags L and Seasonality

First it is needed to consider the hyperparameters order Ω and the lag indexes
L. These parameters also impact directly on the model accuracy and parsimony. The
number of lags Ω indicate how much past information is available to the model M to
recognize the possible temporal patterns and make a forecast. Very short-term memory or
even memory-less processes will require just the last time lag, consequently produce a first
order model (Ω = 1). Processes with longer memories will require more lags and produce
higher-order models (Ω > 1).

Otherwise, the hyperparameter L indicates which past lags are taken into account
during the forecast. Not always the most recent time lags contain the best information to
predict the near future and this is particularly important for seasonal time series, where
L will indicate the time lags which have periodically similar values. Initially the values
of L can be extracted from the Autocorrelation Function (ACF), examining the most
significant lags. However, this number can be optimized with fewer lags.
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The High Order Fuzzy Time Series - HOFTS defines the High Order Fuzzy Logical
Relationships - HOFLR as LHS → RHS form, where LHS is the set of f(t − L(Ω −
1)), ..., F (t − L(0)) fuzzy sets, and the RHS is f(t + 1), the group of consequent fuzzy
sets. We can find these kind of models in Chen [2002], Chen and Chung [2006], Jilani and
Burney [2008], Li et al. [2008], Egrioglu et al. [2010], Bahrepour et al. [2011], Enayatifar
et al. [2013], Chen et al. [2014], Chen and Chen [2015b], Ye et al. [2016], Lee et al. [2017],
Bose and Mali [2017], Sadaei et al. [2017], Guney et al. [2018], Cheng and Chen [2018],
Yang et al. [2018], Zhang et al. [2018b].

Seasonal models try to represent cyclical behaviors, e. g, repeated values of the
time series in regular periods. Seasonal Fuzzy Time Series - SFTS methods, make use
of the L parameter to represent the seasonal periods as lag indexes. SFTS were first
proposed in Song et al. [1997], basically by defining a seasonal index in L, such that
f(t+ 1) = f(t− L). Chang [1997] proposed a method for capturing fuzzy trend and fuzzy
seasonal indexes using Fuzzy Regression. Other seasonal methods include Tseng et al.
[1999], Song [1999], Lee and Javedani [2011].

The hyperparameters Ω and L are used across several learning algorithms and
knowledge representation models, which are the ways the patterns of F are extracted,
stored and inferred. As stated before, the knowledge representation ofM is important due
to the human readability and explainability. White-box models have high explainability
and human readability but suffer to represent high dimensional data and very complex
dynamics of temporal patterns. In other hand the black-box models have low explainability
and almost zero human readability (which are unfortunately subjective concepts) but are
very efficient in representing high-dimensional spaces and complex temporal dynamics.

2.4.2 Matrix Models

The original work of Song and Chissom [1993b] used a Fuzzy Relationship Matrix
to represent the temporal dynamics of the fuzzy time series F . In this method, each
sequential pair f(t− 1), f(t) ∈ F is grouped in Fuzzy Logical Relationships - FLR1. The
FLR are fuzzy rules that describe a temporal pattern f(t− 1)→ f(t), or Ai → Aj where
the Left Hand Side - LHS of the rule (or the precedent) Ai is the fuzzyfied historical
value at time t− 1 and the Right Hand Side - RHS of the rule (or the consequent) Aj the
fuzzyfied value at time t. The Ai → Aj rule can be read as “IF f(t− 1) is Ai THEN f(t)

is Aj”. The F dataset will generate T − 1 FLRs, as the fuzzyfication process of Song uses
the maximum membership method.
1 It should be noted that the nomenclature of FLR may be misunderstood. The word relationship, in

the fuzzy sets research field, has a different meaning than that used by Song and Chissom. Fuzzy
relationships are operations between fuzzy sets, e. g. projection and cylindrical extension, well discussed
in Klir and Yuan [1995]. The intention of the authors was to nominate a temporal pattern between
two fuzzy sets, a temporal succession relationship, not a logical fuzzy relationship. However this
nomenclature is spread in the FTS literature and will be kept on this text.
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Then, for each FLR Ai → Aj a matrix Rt = ATi × Aj = aij will be created, with
dimensions k × k where aij = min{µAi

(t), µAj
(t − 1)} for i, j = 1, ..., k and t = 1, ..., T .

This matrix contains the fuzzy membership of the FLR for all fuzzy sets. The Operation
Matrix R(t, t − 1) is computed as the union of all relationship matrices Rt, such that
R(t, t− 1) =

⋃T
t=1Rt. The Operation Matrix contains the memberships of all FLR for all

fuzzy sets.

The inference using Fuzzy Relational Matrices demands to find the membership
of the relation f(t − 1) → f(t) on R(t, t − 1), such that f(t) = f(t − 1) ◦ R(t, t − 1),
where ◦ is the Max-Min fuzzy relational operator. The operation f(t− 1) ◦R(t, t− 1) =

maxj{mini{µAi
(f(t − 1)), rij}} for i, j = 1, ..., k and rij ∈ R(t, t − 1) produces a vector

with the memberships of f(t) for all Aj fuzzy sets.

Several other studies use this heuristic to extract Fuzzy Relational Matrices, for
instance Song et al. [1997], Jeng-Ren Hwang et al. [1998], Song [1999], Chen and Hwang
[2000], Chen and Chung [2006], Cheng et al. [2008b], Jilani and Burney [2008], Davari
et al. [2009], Qiu et al. [2011], Cheng and Li [2012], Qiu et al. [2013] and Chuang et al.
[2014].

2.4.3 Rule Models

A great improvement was given by Chen [1996] who proposes a simplification of
Song and Chissom’s method by creating the Fuzzy Logical Rule Groups (FLRG), making
the forecasting process cheaper by avoiding the use of matrix manipulations. The FLRG
represent the knowledge base (rule base) of the model and are human readable and easy
to interpret.

Create the Fuzzy Logical Relationship Group - FLRG with the form LHS → RHS,
where all FLR’s with the same LHS are grouped and the RHS is the set of possible
fuzzy sets that can follow the LHS set. The LHS → RHS pattern can be read as “IF
F (t − 1) = LHS THEN ∃Aj ∀Aj ∈ RHS | F (t) = Aj” . An example of rule set is
demonstrated on (2.4), given k = 6.

A0 → A1

A1 → A1, A2

A2 → A4

A3 → A2, A3, A5

A4 → A3, A4

A5 → A4

(2.4)

The inference using [Chen, 1996], produces a forecast for the one step ahead value
f(t+ 1), given a past lag f(t) = Ai. A search is performed onM to find the FLRG where
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the LHS = Ai. The RHS of the FLRG will average all the possible fuzzy sets that follow
Ai when f(t) = Ai, i. e., the forecast f(t+ 1) is the RHS set of the selected FLRG.

The Chen’s FLRG models allowed a compact and human readable representation
of the time series behavior using fuzzy rules, which could in principle be used by business
experts and researchers in knowledge extraction, for instance Lee et al. [2006]. But there
is also another good reason to prefer the Chen’s model over the Song and Chissom, the
performance. The relation matrix dimension grows as the number of UoD partitions grows
and the curse of dimensionality tends to impact negatively on the computational time
spent on forecasting large datasets.

Several other works use this heuristic to extract rule models, for instance Chen
[2002], Huarng and Yu [2004], Lee et al. [2006], Li et al. [2008], Hsu et al. [2010], Bahrepour
et al. [2011], Huang et al. [2011], Sun et al. [2015], Sadaei et al. [2016b], Lee et al. [2017],
Yang et al. [2017a], Bose and Mali [2017], Carvalho Jr and Costa Jr [2017]. Other heuristics
are also present in the literature, such as the use of the APriori algorithm in Cheng and
Chen [2018].

2.4.4 Weighted Rule Models

The generation of FLRG from the fuzzyfied data in FTS model has, at least,
two drawbacks: the losing of rule’s recurrence and their chronological order. Thus at the
forecasting process a very recurrent pattern of data has the same importance of a unique
occurrence pattern. Moreover, newer and older patterns also have the same weight in the
forecast.

To fix these drawbacks Yu [2005] proposed the Weighted Fuzzy Time Series
(WFTS) model by including weights on FLRG’s. These weights are monotonically increasing
and have a smoothing effect, giving more importance to the most recent data in forecasting
process. The Weighted Fuzzy Logical Relationship Group - WFLRG has the same structure
as the FLRG but weights wj are associated with each fuzzy set Aj ∈ RHS.

The works of Ismail and Efendi [2011] and Efendi et al. [2013] have presented the
Improved Weighted Fuzzy Time Series (IWFTS) model and changed the way in which
the weights are assigned to the RHS rules on Yu’s model. The main difference is that the
weights are calculated by the recurrence of each rule, discarding the chronological order.
The Exponentially Weighted Fuzzy Time Series (EWFTS) method, proposed by Sadaei
et al. [2014] and Talarposhti et al. [2016], replaces the linear weight growth of WFTS
model by an exponential growth.

Lee et al. [2013b] proposed a broad generalization of the weighted methods with
the Polynomial Fuzzy Time Series- PFTS. This method demands the coefficient fitting by
optimization techniques but is capable of approximating WFTS, IWFTS and EWFTS



2.4. Knowledge Extraction, Representation and Inference 41

methods.

Cheng et al. [2008b] and Cheng et al. [2009] proposed the Trend Weighted Fuzzy
Time Series - TWFTS which separates the FLRG’s in three trends - no change, up
trend and down trend - and assigns a weight to them according to the recurrence of
the trend on the FLRG. Another contribution of these works is the Adaptive Expecta-
tion step, after defuzzyfication the forecast value a transformation is employed such as
Adaptative_Forecast(t) = F (t− 1) + h · [F (t)− F (t− 1)], where F (t) is the forecasted
value, F (t− 1) is the true past value and h is weight parameter that smooth the transition
between the actual value and the forecasted value. Table 3 presents a summary of the
weighting methods in FTS.

Method Weights
WFTS 1∑n

i=1 i
, 2∑n

i=1 i
, ... , n∑n

i=1 i

IWFTS f1∑n
i=1 fi

, f2∑n
i=1 fi

, ... , fn∑n
i=1 fi

EWFTS c0∑n
i=1 c

i ,
c1∑n
i=1 c

i , ... ,
cn−1∑n
i=1 c

i

TWFTS f1∑n
i=1 fi

, f2∑n
i=1 fi

, ... , fn∑n
i=1 fi

Table 3 – Weighting schemes for Fuzzy Time Series

2.4.5 Neural Networks Models

Neural Networks are black-box methods known to be the state-of-the-art in several
pattern recognition domains. Its ability to deal with high dimensional and complex domains
makes it attractive for many FTS models, specially the ones that deal with many variables
and time simultaneously, as the case of Egrioglu et al. [2009].

Simpler univariate methods can be found on Yolcu and Lam [2017] which used a
single multiplicative neuron whose inputs are the fuzzyfied values of several time lags. Bas
et al. [2015] and Bas et al. [2018] used a Pi-Sigma Network, a variation of the well known
ANFIS network, trained with Particle Swarm Algorithm.

Another hybrid FTS architecture is proposed by Bas et al. [2015], the Fuzzy
Time Series Network - FTS-N which proposes a new topology for high-order FTS with a
network layout, somehow similar to an ANFIS network. The partitioning of UoD and the
fuzzyfication of the data use FCM clustering and the overall network is trained with PSO,
combined yet with an autoregressive layer.

More recently, the new Deep Learning models begin to interact with the FTS
field. Starting with Tran et al. [2018], which proposed a method that uses Long-Short
Term Memory networks as knowledge model, trained with Backpropagation Through The
Time algorithm. Sadaei et al. [2019] proposed the Image FTS, where the fuzzyfied data of
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several past lags are stacked to compose a binary image, which in turn is processed by a
Convolutional Neural Network model trained by the backpropagtion method.

Fuzzy Cognitive Maps (FCM), developed by Kosko [1986], is a different kind of
neural architecture inspired in the Mind Map tools, which is simpler than the Multilayered
Neural Networks but also very powerful to represent nonlinear and causal behaviors. FCM
are used as backend for FTS on Homenda et al. [2014], Homenda and Jastrzebska [2017],
Yang and Liu [2018].

2.4.6 Metaheuristics

It was already seen in Section 2.2 that metaheuristics are widely used to determine
the best partitioning scheme. However metaheuristics also can be used to extract or
optimize the knowledge model representation from the fuzzyfied data.

The already cited Kuo et al. [2009] also use Particle Swarm Optimization (PSO)
to build optimal rule sets on the Hybrid Particle Swarm FTS - HPSO-FTS. The PSO
metaheuristic is also used in other works to train neural models, as in Bas et al. [2015],
Yolcu and Lam [2017], Bas et al. [2018]. Genetic Algorithms to learn a matrix of weighted
rules are employed in Ye et al. [2016].

The optimization of Ω and L are the focus of Enayatifar et al. [2013], which
proposes the Refined High-order Weighted FTS with Imperialist Competitive Algorithm -
RHWFTS–ICA, using evolutionary computing to optimize the number of lags for the high
order seasonal FTS and the weights for adaptive expectation. The Adaptive Sine-Cosine
Human Learning Optimization (ASCHLO) was used in Yang et al. [2018] for rule and
weight induction.

2.4.7 Hybrid Approaches

Autoregressive and polynomial models were adopted in Chang [1997], Tseng et al.
[1999], Askari and Montazerin [2015], Talarposhti et al. [2016]. These methods used classic
optimization approaches to fit regression coefficients mixed with fuzzy terms.

Sadaei et al. [2016a] propose the ARFI–FTS, a hybrid approach that combines
statistical method ARFIMA with FTS for forecasting of long-memory time series. Also
Bas et al. [2015] contains a hybrid approach, combining its network model with an
autoregressive layer.

2.5 The Deffuzyfication Process

The result of the inference is a set of f(t+ 1) possibilities, or rules involving it,
to be converted in a crisp numerical value ŷ(t+ 1) that estimates the unknown value of
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y(t+1). The deffuzyfication method aims to deliver a ŷ(t+1) ∈ U that meets the expected
value, or the expected mean of the several patterns contained in f(t+ 1) forecast.

In Song and Chissom [1993b], the defuzzyfication process converts the membership
vector f(t + 1) into a scalar value on the universe of discourse. Taken the maximum
membership values of f(t), with the following method:

1. If there is only one maximum, ŷ(t + 1) will be the midpoint of the maximum
membership fuzzy set;

2. If there are more than one consecutive maxima, ŷ(t + 1) will be the mean of the
midpoints;

3. Otherwise, ŷ(t+ 1) will be the weighted mean of the fuzzy sets midpoints with the
memberships, such that ŷ(t+ 1) =

∑
j∈f(t) µj · cj , where µj is the membership degree

and cj is the midpoint of the fuzzy set Aj ∈ Ã

In the method of Chen [1996], the deffuzyfication is adapted to the following steps,
given the f(t+ 1) = RHS of the selected FLRG:

1. If the RHS contains only one fuzzy set, ŷ(t+ 1) will be the midpoint of the set;

2. If the RHS contains more than one fuzzy set, ŷ(t + 1) will be the mean of the
midpoints of these sets.

The above methods are considered the Simple Mean methods. For weighted rule
models as Sadaei et al. [2014], for each rule i, the expected mean point Ei of the rule is
the weighted mean of the midpoints mpAj

of their RHS consequents by the weights wij.

Ei =
k∑

Aj∈RHS

wij ·mpAj
(2.5)

When more than one pattern (in the case of rules) was found in the inference step
the expected values of each pattern must be mixed. The simplest way is performing a
Simple Mean, where i is each active rule of the modelM, Ei is the expected mean point
of each rule i and |M| is the number of active rules in modelM.

ŷ(t+ 1) = |M|−1
∑
i ∈M

Ei (2.6)

The drawback of this method is to give the same importance for all patterns. In
the Weighted Sum each pattern is weighted by its activation, where i is each active rule
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of the modelM, µi is the fuzzy membership of the rule (or its activation) and Ei is the
expected mean point of each rule i.

ŷ(t+ 1) =

∑
i ∈M µi · Ei∑
i ∈M µi

(2.7)

The output of the deffuzyfication is the crisp number ŷ(t+ 1), which can be yet
post-processed by some data transformation. In the next section the post-processing data
transformations will be discussed.

2.6 Data Transformations for Pre and Post Processing

Data transformations have several functions, such as changing the original U of Y ,
removing noise, de-trending, de-seasonalizing, normalizing or standardizing data, etc. Some
of these operations transform multivariate data in monovariate (as the Fuzzy Information
Granules - FIG) and others decompose a monovariate time series in several sub-signals
(as the Empirical Mode Decomposition - EMD), transformations that will be studied in
Chapter 6.

The most common transformation is the differentiation, defined as ∆y(t) =

y(t−1)−y(t), and the inverse operation as y(t) = y(t−1)+∆y(t). This operation changes
the original U for a smaller and stationary space. This is relevant because all methods
presented before are time invariant models, which assume that Y is stationary. Indeed,
this is, according to Duru and Yoshida [2012], one of the greatest weakness of the FTS
methods. The differentiation can be used to make Y stationary and can be employed as
pre and post processing of almost all FTS methods, being in some cases explicitly part of
the model, as in Cheng et al. [2011], Lee and Javedani [2011], Sadaei et al. [2016b]. In
these cases the FTS model aims to forecast the change magnitude ∆y(t) instead of the
time series level y(t).

Not only the differentiation is used to transform U in a smaller interval and Y in a
stationary time series. Box-Cox power transformations are employed in [Lee et al., 2013a],
ROI in Sadaei and Lee [2014], Moyse and Lesot [2016] and normalization in Tran et al.
[2018]. Other pre-processing transformations can help to improve overall FTS, as moving
averages and exponential smoothing, but it was not commonly seen in the literature.

There are transformations only for post-processing as the Adpative Expectation,
defined as AE(t+ 1) = y(t) + h · (ŷ(t+ 1)− y(t)), where h is a weight that balances the
impact of ŷ(t+ 1) in the last known value y(t). The Adpative Expectation is a conservative
weighted persistence model, where the predicted value ŷ(t + 1) is used only to change
last known value. This method is employed in Cheng et al. [2008b], Huang et al. [2011],
Enayatifar et al. [2013], Sadaei et al. [2014], Singh [2015], Sadaei et al. [2016b], Ye et al.
[2016], Yang et al. [2017a], Bose and Mali [2017].
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2.7 A Conventional High Order Fuzzy Time Series

Method - HOFTS

The main focus of this research is the rule-based Fuzzy Time Series, descendants
of Chen [1996] method, that largely dominate the field, as can be seen in Table 8. Beyond
its first-order original work, many extensions were proposed that modified several aspects
of the method, changing the order, partitioning method, fuzzyfication, defuzzyfication,
introducing transformations, etc.

This section proposes a consensus conventional FTS method, that aggregates the
most common properties of the rule based methods in the literature. This method embodied
all explored hyperparameters but their definition involves more complex optimization
methods, which will be explored in Chapter 5. Indeed some default values are defined for
hyperpameters, as shown in Table 4, but they can be overridden by the user. However,
the two most impacting hyperparameters still must be determined by the user: k and Ω.

Parameter Default Value
Ω User defined
k User defined
Π Grid
µ triangular

α-cut 0
L {1, . . . ,Ω}

Table 4 – HOFTS and WHOFTS hyperparameter default values

In Section 2.7.1 the training procedure follows the same steps shown in Figure 3 to
produce a rule based knowledge modelM with the linguistic variable Ã. These parameters
are used by the forecasting procedure presented in Section 2.7.2, which follow the same
steps presented in Figure 4, to produce point forecastings ŷ(t+1). An extension is presented
in Section 2.7.3, where the training and forecasting procedures are modified to incorporate
weights on rules that aims to improve the performance by giving more importance to the
more frequent fuzzy sets.

2.7.1 Training Procedure

The methods below take as input a training sample Y , the number of partitions
k, the number of lags Ω (and the other default values presented in Table 4) and outputs
the modelM.

Step 1 Partitioning :

a) Defining U : The UoD defines the sample space, i.e., the known bounds of time
series Y , such that U = [min(Y )−D1,max(Y ) +D2], where D1 = min(Y )×0.2
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and D2 = max(Y )× 0.2 are used to extrapolate the known bounds as a safe
margin.

b) UoD Partitioning : Split U in k intervals Ui with midpoints ci, by invocation of
the partitioning method Π, which will define the lengths of all intervals;

c) Define the linguistic variable Ã: For each interval Ui create an overlapping fuzzy
set Ai, with the membership function µAi

. The midpoint of the fuzzy set Ai is
going to be ci, the lower bound li = ci−1 and the upper bound ui = ci+1 ∀ i > 0

and i < k, and l0 = minU , lk = maxU . Each fuzzy set Ai ∈ Ã is a linguistic
term of the linguistic variable Ã;

Step 2 Fuzzyfication:

Transform the original numeric time series Y into a fuzzy time series F , where each
data point f(t) ∈ F is an 1 × k array with the fuzzyfied values of y(t) ∈ Y with
respect to the linguistic terms Ai ∈ Ã, where the fuzzy membership is greater than
the predefined α-cut, i.e., f(t) = {Ai | µAi

(y(t)) ≥ α ∀Ai ∈ Ã};

Step 3 Rule Induction:

a) Generate the high order temporal patterns : The fuzzy temporal patterns have
format Ai0, ..., AiΩ → Aj, where the precedent (or Left Hand Side) is f(t −
L(Ω)) = Ai0, f(t− L(Ω− 1)) = Ai1, ..., f(t− L(0)) = AiΩ, and the consequent
(or RHS) is f(t+ 1) = Aj.

b) Generate the rule baseM: Select all temporal patterns with the same precedent
and group their consequent sets creating a rule with the format Ai0, ..., AiΩ →
Ak, Aj, ..., where the LHS is f(t − L(Ω)) = Ai0, f(t − L(Ω − 1)) = Ai1, ...,
f(t − L(0)) = AiΩ and the RHS is f(t + 1) ∈ {Ak, Aj, ...}. Each rule can be
understood as the weighted set of possibilities which may happen on time t+ 1

(the consequent) when a certain precedent Ai0, ..., AiΩ is identified in previous
L lags (the precedent).

2.7.2 Forecasting Procedure

The method below take as input a test sample Y , the modelM and the forecasting
horizon H (whose default value is 1) to output a crisp point forecasts ŷH .

Step 1 Fuzzyfication: Compute the membership grade µti for each y(t) ∈ Y where t ∈ L
and each fuzzy set Ai ∈ Ã, such that µti = µAi

(y(t)).

Step 2 Rule matching : Select the K rules where all fuzzy sets Ai on the LHS have µti > α;
The rule fuzzy membership grade is shown below, using the minimum function as
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T-norm.
µj =

⋂
t∈L i∈Ã

µti (2.8)

Step 3 Defuzzyfication:

a) Rule mean points: For each selected rule j, compute the mean point mpj as
below, where ci is the c parameter of the µ function from fuzzy set Ai:

mpj = |RHS|−1
∑
i∈RHS

ci (2.9)

b) Defuzzyfication: Compute the forecast as the weighted sum of the rule mid-points
mpj by their membership grades µj for each selected rule j:

ŷ(t+ 1) =

∑
j∈K µj ·mpj∑

j∈K µj
(2.10)

Step 4 Many steps ahead forecast :If the forecasting horizon is H > 1, define ŷH = {ŷ(t+ 1)}
as the set of forecasts and repeat the steps below for each h = 2..H, otherwise return
ŷ(t+ 1).

a) Call recursively the forecasting method using ŷ(t+ h− 1) as input to produce
ŷ(t+ h);

b) Append ŷ(t+ h) to ŷH and if h = H then return ŷH .

2.7.3 The Weighted Extension - WHOFTS

As pointed in Section 2.4.4, a common drawback of rule-based models is that all
fuzzy sets in the RHS of the rules have the same importance. To fix this it is common to
add weights to the RHS fuzzy sets which indicate its relevance on deffuzyfication phase.
To extend the HOFTS method to a weighted version it is needed to change the Step 3.b
of the training procedure presented in Section 2.7.1 to the below:

Step 3.b) Generate the rule base: Select all temporal patterns with the same precedent and
group their consequent sets creating a rule with the format Ai0, ..., AiΩ → wk ·
Ak, wj · Aj, ..., where the LHS is f(t − L(Ω)) = Ai0, f(t − L(Ω − 1)) = Ai1, ...,
f(t− L(0)) = AiΩ and the RHS is f(t+ 1) ∈ {Ak, Aj, ...} and the weights wj, wk, ...
are the normalized frequencies of each temporal pattern such that:

wi =
#Ai

#RHS
∀Ai ∈ RHS (2.11)

where #Ai is the number of occurrences of Ai on temporal patterns with the same
precedent LHS and #RHS is the total number of temporal patterns with the same
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precedent LHS. Each rule can be understood as the weighted set of possibilities
which may happen on time t+1 (the consequent) when a certain precedent Ai0, ..., AiΩ
is identified on previous L lags (the precedent).

Naturally the weights wi will fit the condition
∑k

i=1wi = 1. These weights are
exploited in forecasting procedure presented in Section 2.7.2, which also need to be changed
in the Step 3.a by the method below:

Step 3.a) Rule mean points : For each selected rule j, compute the mean point mpj as below,
where ci is the c parameter of the µ function from fuzzy set Ai:

mpj =
∑
i∈RHS

wi · ci (2.12)

In the next sections these methods will be evaluated in relation to their main
parameters

2.8 Computational Experiments

In this section experiments were performed in order to evaluate the impact of the
two main hyperparameters - Ω and k - over the methods HOFTS and WHOFTS. As these
methods generalize a wide spectrum of proposed methods in the literature, specially the
rule based ones which are focus of this work, the computational experiments illustrate the
general performance of FTS methods.

First, in Section 2.8.1 common point forecasting measures and statistical tests are
discussed. In Section 2.8.2 the results of a Grid Search optimization of the hyperparamters
are presented and in Section 2.8.3 a residual analysis of the best models is employed.

In order to contribute with the replication of all the results in the research,
all data and source codes employed in this chapter are available at the URL: http:
//bit.ly/scalable_probabilistic_fts_chap2

2.8.1 Evaluation Measures for Point Forecasts

The accuracy metrics usually employed to evaluate point forecasting models are
the Symmetrical Mean Average Percent Error (SMAPE), described in Equation (2.13),
Root Mean Squared Error (RMSE), described in Equation (2.14) and Theil’s U Statistic,
described in Equation (2.15), where y means the real data and ŷ the forecasted values.
The U Statistic measures how much the forecaster is better than the Naïve method, with

http://bit.ly/scalable_probabilistic_fts_chap2
http://bit.ly/scalable_probabilistic_fts_chap2
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U = 1 meaning both methods are equal, U > 1 the proposed method is worse than Naïve
and U < 1 is better.

SMAPE =
1

T

T∑
t=1

|y(t)− ŷ(t)|
|ŷ(t)|+ |y(t)|

(2.13)

RMSE =

√√√√ 1

T

T∑
t=1

(y(t)− ŷ(t))2 (2.14)

U =

√√√√√√
∑T−1

t=1

(
ŷ(t+1)−y(t−1)

y(t)

)2

∑T−1
t=1

(
y(t+1)−y(t−1)

y(t)

)2 (2.15)

It is also practice to perform a residual analysis in order to check the white-noise
assumption, such that ε ∼ N (0, 1). Some statistical tests were proposed in the literature
to assert this condition, as the Box - Pierce Test, proposed by Box and Pierce [1970], and
its improved version, the Ljung - Box Test, found in Ljung and Box [1978].

The Ljung-Box Test checks, for each lag of the autocorrelation function of the
residuals, the hypotheses H0 - the residuals are i.i.d (independent and identically dis-
tributed) and H1 - the residuals are not i.i.d. To reject H0, the test statistic Q must satisfy
the condition Q > χ2

1−α,df where α is the confidence level and df is the number of the lag.

The next section discusses the results for one or H-steps ahead that try to quantify
the uncertainties of point forecasts.

2.8.2 Hyperparameter Grid Search

To assess the impact of the order and the number of partitions on HOFTS and
WHOFTS methods a Grid Search was employed, using the search spaces presented in
Table 5. The results can be seen in Figure 7 which details the sensitivity of the methods to
the hyperparameters. A sample of these responses can also be seen in Figures 8 and 9. The
non-stationary behavior of benchmark datasets make them predictable accurately just for
very short terms, and in the previous figures the considered forecasting horizon is H = 1.

The number of partitions and order have different effects in HOFTS and WHOFTS,
where WHOFTS performs better in general. For k > 65 and Ω > 1, HOFTS and WHOFTS
have similar performances.

When considering the combinations of number of partitions and orders, the results
show that k = 35 and Ω = 1 are the best combination of hyperparameters, mixing
good RMSE accuracy with a parsimonious model. The results also shown that when the
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partitioning increases to k ≥ 65 and Ω ≥ 2 the models overfit, and below k ≤ 25 the
models underfit.

Hyperparameter Search space
k {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95}
Ω {1, 2, 3}

Table 5 – Hyperparameter search spaces for HOFTS and WHOFTS grid search

Figure 7 – HOFTS and WHOFTS grid search over hyperparameters k and Ω

2.8.3 Residual Analysis

The residuals of the models are presented in Figures 10 and 11 and the Ljung-Box
tests for the 3 first lags are presented in Tables 6 and 7, which show the good fit of model.
However, high correlated residuals were detected in some non-stationary sub samples of the
datasets, what was also expected since the models are time-invariant. Best performance is
expected for time-variant models, capable to adjust its behavior due to changes in data.
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Figure 8 – The impact of order in forecasting

Lag Statistic p-Value Critical Value Result
1 341.295085 0.0 3.841459 H0 accepted
2 412.500903 0.0 5.991465 H0 accepted
3 441.435962 0.0 7.814728 H0 accepted

Table 6 – Ljung-Box Test for HOFTS residuals

Lag Statistic p-Value Critical Value Result
1 336.838522 0.0 3.841459 H0 accepted
2 394.472179 0.0 5.991465 H0 accepted
3 411.754344 0.0 7.814728 H0 accepted

Table 7 – Ljung-Box Test for WHOFTS residuals

2.9 Conclusion

This chapter provided a brief overview related to the Fuzzy Time Series models.
A literature review and some state-of-the-art works related to FTS were presented and
summarized in Table 8.

The presented methods have some common drawbacks. The matrix-based methods
have scalability issues, suffering from the curse of dimensionality. With the rule-based
methods, in the forecasting step, just one rule is chosen for computing the result, based on
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Figure 9 – The impact of partitioning in forecasting

Figure 10 – HOFTS residuals

the maximum membership between the input value and all the rules. This causes the loss
of “smoothing” effect of fuzzy methods, which demands mixing many sets according to
their fuzzy membership values. Lastly, these models are point-based forecasters and give no
uncertainty measures about their results. Otherwise, black-box knowledge models eliminate
the readability and auditability of the model, and in some cases are not parsimonious.

To enforce the focus of this research on rule-based FTS methods, the High Order
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Figure 11 – WHOFTS residuals

FTS (HOFTS) and the Weighted High Order FTS (WHOFTS) methods were developed,
following a consensus construction from the several approaches present in literature.
Computational experiments were employed to assess the point forecasting performance of
the methods using financial datasets.

It is necessary to highlight the absence of probabilistic forecasting methods in
the Fuzzy Time Series literature. These methods will be discussed in next chapter, where
their main features are pointed out and a new method for interval-forecasting with FTS is
proposed.
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e
Series

Reference n Π µ Fuzz. Ω Ind. M Transf. Defuzz. Application

Song and Chissom
[1993b]

1 G Tri Max 1 H M - SM Enrollments

Chen [1996] 1 G Tri Max 1 H R - SM Enrollments

Chang [1997] 1 H Tri All S O P - - Sales

Song et al. [1997] 1 G Tri Max 1 H M - - -

Tseng et al. [1999] 1 G Tri Max S O P - - Industrial Production

Song [1999] 1 G Tri Max S H M - SM -
Chen and Hwang
[2000]

2 G Tri Max 1 H M - WS Temperature

Huarng [2001] 1 H Tri Max 1 H R - SM Stock Price

Chen [2002] 1 G Tri Max 5 H R - SM Enrollments

Huarng and Yu [2004] 1 H Tri Max 1 H R - SM Stock Price

Yu [2005] 1 G Tri Max 1 H WR - WS Stock Price

Huarng and Yu [2006] 1 G Tri Max 1 BP NN - SM Stock Price
Chen and Chung
[2006]

1 MH Tri Max 3 H M - SM Enrollments

Lee et al. [2006] 4 G - Max 1 H R - SM Stock Price

Cheng et al. [2006] 1 E Trap Max 1 H M - SM Project Cost

Cheng et al. [2008b] 1 E Trap Max 1 H M - WS Outpatient visits

Cheng et al. [2008a] 1 G - - 1 H WR D, AE WS Stock Price
Jilani and Burney
[2008]

6 G Tri Max 4 H M - WS -

Li et al. [2008] 2 C FCM All 2 H R - SM Temperature
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Reference n Π µ Fuzz. Ω Ind. M Transf. Defuzz. Application

Davari et al. [2009] 2 MH Tri Max 1 H M - WS Enrollments

Kuo et al. [2009] 1 MH - - ? MH WR - ? Enrollments

Egrioglu et al. [2009] 2 G Trap All 3 BP NN - SM Accident

Hsu et al. [2010] 2 MH - Max 1 H R - SM Temperature

Chen and Chen [2011] 2 - - - ? H WR D - Stock Price

Huang et al. [2011] 1 MH Tri Max 3 H R AE WS Enrollments
Lee and Javedani
[2011]

1 G - - S H WR D - Stock Price

Ismail and Efendi
[2011]

1 G - Max 1 H WR - WS Enrollments

Cheng and Li [2012] 1 - - - ? H WR ? - -

Enayatifar et al. [2013] 1 MH - - 3 MH WR AE - Energy Load

Lee et al. [2013a] 1 G - - 1 H WR BC WS Stock Price

Chen et al. [2014] 1 E - - 2 H WR ? - Stock Price

Sadaei and Lee [2014] 1 - - Max 1 H WR ROI, AE WS Stock Price
Askari and Montazerin
[2015]

3 C FCM All 1 H P - WS Stock Price

Bas et al. [2015] 1 C FCM All 1 MH NN - WS Stock Price

Cai et al. [2015] 1 MHs trmf All 1 H WR - WS Stock Price
Chen and Chen
[2015b]

2 G Tri Max 2 H R - WS Stock Price

Ismail et al. [2015] 1 Q - - 1 H M - SM Energy Load

Sun et al. [2015] 3 C FCM All 1 H R - WS Stock Price
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T
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e
Series

Reference n Π µ Fuzz. Ω Ind. M Transf. Defuzz. Application

Singh [2015] 3 G - Max 1 BP NN AE WS Stock price

Rubio et al. [2016] 1 H Trap All 1 H M - WS Portfolio returns

Sadaei et al. [2016b] 1 G Tri Max 1 H R D, AE SM Stock Price
Talarposhti et al.
[2016]

1 MH Tri Max 1 H P - WS Stock Price

Ye et al. [2016] 1 G Tri AC 3 MH M ROC, AE WS Sock price

Lee et al. [2017] 1 G Tri Max 3 H R - WS Enrollments

Yang et al. [2017a] 3 CS Tri Max 1 H R EMD, AE SM Wind Speed

Yolcu and Lam [2017] 1 C FCM All 1 MH MLP - WS Sock price

Bose and Mali [2017] 1 C Tri - 3 H R AE WS -
Carvalho Jr and
Costa Jr [2017]

1 G Tri AC 1 H R - SM Stock price

Jiang et al. [2017] 1 MH Tri Max 3 H WR - WS Stock price

Saberi et al. [2017] 1 C fefts All 1 H M - WS -

Sadaei et al. [2017] 1 MH Tri Max * O P - ? Energy Load

Severiano et al. [2017] 1 G Tri All 3 H R - SM Energy Load

Bas et al. [2018] 1 C FCM All 1 P NN - WS Stock price

Guney et al. [2018] 1 G Tri Max 2 H MC - WS -
Cheng and Chen
[2018]

1 H Trap Max 3 A R - WS Stock price

Dincer and Akkuş
[2018]

1 C - Max 1 H M - SM Air pollution

Yang et al. [2018] 5 MH Trap Max MH P EMD WS Stock price



2.9.
C
onclusion

57

Reference n Π µ Fuzz. Ω Ind. M Transf. Defuzz. Application

Yang et al. [2018] 5 C - - 2 RG FCM WV WS -

Tran et al. [2018] 3 C - All 1 BP NN N WS -

Zhang et al. [2018a] 4 H FCM - 1 BP NN - WS Stock price

Zhang et al. [2018b] 2 MH Tri Max 2 H R - SM Stock price

Chen et al. [2019] 1 G Trap Max 1 H M - WS Flood

Sadaei et al. [2019] 1 G Tri Max * BP NN - WS Energy Load
n - Number of variables
Π - Partitioning method: G - Grid, H - Heuristic, MH - Metaheuristic, CS - Chi-Square, E - Entropy, Q -
Quartile
µ - Membership function: Tri - Triangular, Trap - Trapezoidal, FCM - Fuzzy C-Means
Fuzz - Fuzzyfication method: Max - Maximum membership, All - All memberships, AC - alpha-cut
Ω - Order
Ind. - Knowledge induction method: H - Heuristic, MH - Metaheuristic, BP - Backpropagation, O -
Optimization, RG - Regression analysis, AP - Apriori
M - Knowledge model: M - Matrix, R - Rules, WR - Weighted Rules, NN - Neural Network, FCM - Fuzzy
Cognitive Map, P - Polynomial, MC - Markov Chain
Transf - Transformations: A - Adaptive expectation; B - Box-Cox; D - Differentiation; R - ROI, N -
Normalization

Table 8 – Summary of the most relevant FTS methods
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Chapter 3

Probabilistic Forecasting

“Uncertainty is an uncomfortable position. But certainty is an absurd one.”

— Voltaire

This chapter briefly discusses the uncertainty of point forecasts to introduce the
interval and probabilistic forecasting and review the related literature, pointing the most
representative methods of each type. To fill the gaps in the FTS literature, two new FTS
methods are proposed for representing the fuzzy uncertainty, the Interval FTS and the
Ensemble FTS.

Previously on this work it was presented the two main kinds of uncertainties ,
the epistemic and the ontological, one which impose limits to predictability of forecasting
methods. The origin of these limitations, according to Krzysztofowicz [2001] are “theoretical,
technological and budgetary”. In his seminal work, Lorenz [1963] proved that even some
deterministic systems decay to chaotic behavior due to minimal fluctuations on their
start conditions. This effect puts limits on the predictability of these systems and the
probabilistic forecasts are the ideal way to deal with these limitations.

Also Makridakis et al. [2010] poses that “statistical regularity does not equal
predictability” on his study about the common sources of unreliability on forecasts. In
Makridakis and Bakas [2016] the authors split the forecasting uncertainty in four categories:
Known Knowns (normal and usual conditions), Unknown Knowns (uncertainty known
but not covered by models), Known Unknowns (rare, unusual and special conditions)
and Unknown Unknowns (unexpected and unpredictable conditions, also called by black
swans). This survey also discuss the specific sources of uncertainty at several forecasting
areas as natural (weather, earthquakes, volcanoes, tsunamis, floods) and social (economical
and demographical) events.

In this context the probabilistic forecasting approaches emerged, defined by
Gneiting and Katzfuss [2014] as “the form of a predictive probability distribution over
future quantities or events of interest”. This definition enclose two main forecasting types:
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intervals and probability distributions. Their importance appears as we analyze the impact
of the intrinsic uncertainty on the point forecasts, and how this uncertainty grows as the
forecasting horizon increases.

In the following section a short review of uncertainties in forecasting models is
presented, starting with the limitations of point forecasts in Section 3.1, and its accuracy
measures. In Section 3.2, the most known interval forecasting methods and its evaluation
measures are presented. In Section 3.3 new FTS methods are proposed to produce prediction
intervals representing the fuzzy uncertainty. In Section 3.4 the major approaches for
probabilistic forecasting and its accuracy measures are discussed. In Section 3.5 a new
FTS method is proposed to produce interval and probabilistic forecastings. In Section
3.6, computational experiments are performed to assess the accuracy and computational
performance of the proposed methods and finally, in Section 3.7, the conclusions are given.

3.1 The Point Forecast Limitations

Point forecasts, are usually defined by the conditional expectation E[y(t+1)|y(t), y(t−
1), ...] which in turn minimizes a cost function that represents the accuracy error, as the
mean squared error in Equation (2.14). In statistics textbooks, for instance Steven M.
Kay [2006], this conditional expectation is known to be the best linear and non-linear
estimator for y(t + 1) given the lagged values y(t), y(t − 1), .... But for the layman this
optimality may be misunderstood as the absence of error and not the normality of error
terms ε, defined as the white noise ε ∼ N (0, 1). These deterministic forecasts, according
to Krzysztofowicz [2001], create an “illusion of certainty in a user’s mind”.

It is expected that the conditional variance V ar[y(t + 1)|y(t), y(t − 1), ...] be
presented with the conditional expectation to represent the uncertainty around this result,
but this is not really usual as it needs to be. Even this common statistical approach is not
enough to capture all uncertainty of an estimate and Makridakis and Taleb [2009] point
out that error variance may not be known, constant or finite.

When dealing with the many steps ahead forecasts, whereH ∈ N+ is the forecasting
horizon, it is necessary to consider the propagation of errors. Leutbecher and Palmer [2008]
address this problem in the context of weather forecasting, where the major source of
uncertainty is inaccuracy on initial parameters estimation. Also Smith [2003] states that
“the question of prediction then turns to how to best quantify the dynamics of uncertainty”
of propagating errors.

Many steps ahead forecasts can be calculated in several ways, for instance by
fitting a specific model for each h = 1 . . . H step, as E[y(t+h)|y(t), y(t−1), . . .], or iterating
the model. If the time series is stationary, long runs (h→∞) of the conditional mean will
fatally fall on unconditional mean.
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3.2 Interval Forecasts

The simplest evolution of point forecasts are the interval forecasts, that represent
and incorporate uncertainty Hansen [2006]. At first sight interval forecasts may be confused
with confidence intervals because they share the same structure, but they are slightly
different things. Both are defined with respect to an unknown value y(t+ 1) as an interval
I = [l, u] with α confidence level to contain the real value of y(t+ 1). The probability of I
to contain y(t+ 1) is given by P (l ≤ y(t+ 1) ≤ u) = 1− α.

Confidence intervals deal with fixed (but unknown) estimates. Prediction intervals
instead, as proposed by Chatfield [1993], are an “estimate of an (unknown) future value
that can be regarded as a random variable at the time the forecast is made. This involves
a different sort of probability statement to a confidence interval as discussed”. Traditional
approaches for this kind of forecasting include the parametric methods as studied in
Chatfield [1993]. These methods use strong statistical assumptions about the data that
can make it less useful where data is not conforming.

The confidence level α ∈ (0, 1) is then a way to determine a symmetric inter-
quantile interval [α, 1−α] for some forecasted value of interest. If a cumulative probability
distribution F : U → [0, 1] finds the probability F (x) = P (X ≤ x), the quantile function
Q : (0, 1) → U performs the opposite process: Q(τ) = minx{x ∈ U | τ < F (x)} where
τ ∈ (0, 1) is a quantile.

Chatfield [2001] proposed a simple method for creating α-level prediction intervals
for generic forecasting models, the called mean-variance model. From the point forecast µ =

E[Yt+1|Yt, Yt−1, ...] with the variance of the residuals σε =
√
V AR[ε] by assuming that these

residuals as ε ∼ N (0, 1). The prediction interval is calculated by I = [µ−zα/2σε , µ+zα/2σε]

and zα/2 = Φ((1− α)/2) is the standard normal distribution function. In Figure 12a an
example of ARIMA(2,0,0) process is shown, where the prediction intervals were calculated
with the previous model, for α ∈ {0.05, 0.25}.

For H-steps ahead, the variance σhε can be estimated from the 1-step ahead
variance σ1

ε through exponential smoothing by σhε = (1 + hβ)σ1
ε , for some smoothing value

β ∈ (0, 1). Despite its simplicity, the main drawback of this method is the parametric
and homoskedastic assumption over the residuals distribution. In Figure 12a an example
of ARMA(2,0,0) process is represented, where the prediction intervals for 7 steps ahead
were calculated with the exponential smoothing, for α ∈ {0.05, 0.25} and β = 0.5. But
Chatfield [2001] warns that mean-variance model is a generic approximation and does not
replace prediction interval models specifically developed from the statistical methods and
their error distribution assumptions.

The main probabilistic approach for interval forecasting is the Quantile Auto
Regression - QAR proposed by Koenker and Xiao [2006] based on the Quantile Regression
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Koenker and Hallock [2001]. The QAR estimates a conditional quantile function in Equation
(3.1), where ˆy(t) is the estimated quantile value, τ is the quantile level, θ are the fitted
coefficients for the y(i) lagged values and ρτ (u) is the Pinball Loss Function, defined on
Equation (3.2), where 1(x) = {1 if x ≥ 0 or 0 if x < 0}. Quantile Regression approaches
have been used at many application fields, for instance energy load forecasting [Liu et al.
[2015], Hong and Fan [2016], Hong et al. [2016]] and wind forecasting Pinson et al. [2006].

Qy(t)(τ |y(t− 1), . . .) = min
θ

n∑
i=1

ρτ (y(t)− y(i)θ) (3.1)

ρτ (u) = u(τ − 1(u < 0)) (3.2)

Each QAR model is fitted for a specific τ , so for a certain α two QAR models are
necessary. The independence of quantiles also allows to create asymmetric inter quantile
intervals, if needed. In Figure 12b an example of QAR(2) for τ ∈ {0.05, 0.25, 0.75, 0.95}
is represented, equivalent for α ∈ {0.05, 0.25}. The same principle is applied for H-steps
ahead forecasts, it is needed to fit an specific model for each step ahead. In this case, for
instance given α ∈ {0.05, 0.25} and H = 10, an specific QAR model will be estimated for
each value of τ and each value of h = 1..H, resulting in 40 models. This approach is not
very flexible and complicate its adoption by final users.

The Pinball Loss Function ρτ (u) is a general measurement to quantile approxima-
tion and Steinwart and Christmann [2011] also use it with Support Vector Machines to
perform quantile regressions. Wan et al. [2014] use it with Extreme Learning Machines to fit
quantile regression models. Other approaches are available in Takeuchi et al. [2006] for non
parametric quantile estimation, Taylor [2007] proposes a Exponentially Weighted Quantile
Regression and Hansen [2006], which proposes a semi-parametric k-step ahead approach for
quantile estimation. Everette S. Gardner [1998] proposed a simple non parametric method
for computing intervals based on the Chebyshev Inequality P (|(Y − µ)/σ| ≥ ε) ≤ 1/ε

where µ is the mean, σ the standard deviation and ε will be estimated value, such as the
forecasted interval is [y(t+ 1)− ε, y(t+ 1) + ε].

3.2.1 Accuracy Measures for Interval Forecasts

In a wide sense the point forecasting accuracy measures can be used to assess the
interval forecasts. This is possible by using the midpoint of the prediction interval, if the
interval is based on α-levels or symmetric quantiles. But, by far, this is not the ideal way
to measure the interval accuracy, once several aspects of prediction intervals are neglected
by single point measures.

Some of the main aspects to be considered when evaluating prediction intervals
are the coverage rate, calibration and sharpness, as proposed in Gneiting et al. [2007] and
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(a) ARIMA(2,0,0) prediction intervals

(b) Quantile Auto Regression - QAR

(c) Bayesian Structural Time Series - BSTS

(d) k-Nearest Neighbors with Kernel Density Estimation - kNN/KDE

Figure 12 – Prediction Intervals
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Pinson et al. [2006]. The coverage refers to the statistical consistency between the forecasts
and the observations, and measures which proportion of the observations are inside the
interval. This can be done by an Indicator Function, developed by Christoffersen [1998],
as shown in Equation (3.3). Given a forecasting interval I = [l, u], u, l ∈ U and the real
value y ∈ Y , the value of an indicator function 1(I(t), y(t)) verifies if y(t) is covered by
I(t) or not.

1(I(t), y(t)) =

{
1 if y(t) ∈ I(t)
0 if y(t) 3 I(t)

(3.3)

The coverage rate is the average value of indicator function between forecasted
intervals and the real values, in which the ideal value is 1. The coverage rate is shown at
Equation (3.4) where y(t) ∈ Y are the real values and I(t) ∈ I are the predicted intervals
for these values.

C(Y, I) = T−1

T∑
t=1

1(I(t), y(t)) (3.4)

The property of sharpness and resolution refers to the concentration of the
predictive distribution, or how wide and variable are the intervals and refers uniquely to
the forecasts. Sharpness, presented in Equation (3.5), is the average size of the intervals
and resolution, presented in the equation (3.6), is the variability of the intervals.

δ(I) = T−1

T∑
t=1

δ(I(t)) = T−1

T∑
t=1

ut − lt (3.5)

σ(I) = T−1

T∑
t=1

|δ(I(t))− δ(I)| (3.6)

While small values of δ(I) are desirable, meaning a compact interval, wide values
of σ(I) are best, meaning the capability of the model to adapt the length of interval
with the increase of uncertainty. There are no absolute reference values for sharpness and
resolution, which depend on the statistical properties of the data. Empirically, when the
sharpness is reduced to make the intervals thinner and more precise, the risk of reducing
the coverage increases, and that’s why the resolution is important.

Steinwart and Christmann [2011] proposed the use of Pinball Loss Function -
ρτ (u), defined in Equation (3.2) where u = y(t) − ŷ(t), to indicate the proximity of a
forecast Ŷ with a certain τ quantile of the true value Y . As a loss function, the minor
value of ρτ indicates the closest forecast to quantile τ . The Pinball Score ρSτ is defined
as the mean ρτ for a set true values y(t) and forecasts ŷ(t), listed in Equation (3.7). At
this research the quantiles τ = {0.05, 0.25, 0.75, 0.95} were chosen for testing the intervals,
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where the lower quantiles were compared with the interval lower bound and the upper
quantiles with the interval upper bounds.

ρSτ (Y, Ŷ ) =
1

T

T∑
t=1

ρτ (y(t)− ŷ(t)) (3.7)

However, using three separate metrics make the analysis of interval forecasters
more complex. The most common option in these cases is the Winkler score Winkler
[1972], which encompasses the three characteristics in only one measure. Given a target
value y and a prediction interval I = [l, u] with nominal probability (1− α), the Winkler
Score (WS) is defined by (3.8), where δ = u − l. The score value is the interval width,
but it increases when the target value is not covered by the interval and the penalty is
proportional to the error given the nominal probability. Lower values therefore represent
better prediction intervals. The mean score is defined by Equation (3.9), where T is the
sample size.

WS(α, y(t), I(t)) =


δ if l ≤ y ≤ u

δ + 2(l − y)/α if y < l

δ + 2(y − u)/α if u < y

(3.8)

WS(α, Y, I) = T−1

T∑
t=1

S(α, y(t), I(t)) (3.9)

All revised interval forecasting methods are based on non-FTS methods and this
is a gap in the FTS literature. In the next section a method for quantifying the bounds of
fuzzy uncertainty is proposed.

3.3 The Interval Fuzzy Time Series - [I]FTS

It was already discussed in Section 2.2.3 the impact of the number of partitions k
on the accuracy of a FTS model. Also, in Section 2.5 it can be seen that in the deffuzification
process only the midpoint of each fuzzy set is taken into account. This leads to the following
question: what is the impact of the fuzzy set uncertainty (due to the overlapped bounds
of the fuzzy set) on the final forecasting uncertainty? Since the fuzzy sets represent the
empirical uncertainty of Y , how this uncertainty is propagated to the point forecasts?

The objective of this section is to propose a simple, fast and effective method to
deal with fuzzy empirical uncertainty, combining the flexibility of the FTS models with
the properties of Interval Forecasts without the need to resort to parametric methods or
optimization techniques as in quantile estimation methods. The main advantage of this
feature is to keep the model fast and scalable, for instance when the method is used in a
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high volume data or on a fast stream with concept drifts, which demands the model to be
frequently updated. The scalability of FTS models will be discussed with more details in
Chapter 5.

The Interval Fuzzy Time Series Model ([I]FTS) aims to produce a prediction
interval that represents the empirical uncertainty caused by the number of partitions k and
the fuzzy sets bounds, but without any probabilistic meaning. The method [I]FTS is a
time invariant, rule based and high-order method that just introduces a new deffuzyfication
type on forecasting procedure, without modifying the training method and, because of
this, it can be applied to every conventional FTS method.

The model training procedure is the same of HOFTS presented in Section 2.7.1
and aims to construct the FLRG rule baseM. The prediction intervals are based on the
mean interval of the RHS fuzzy sets on each FLRG weighted by their fuzzy membership
in relation to input value.

In the following section the forecasting method of [I]FTS will be presented, it
extends the HOFTS forecasting method, presented in Section 2.7.2, changing its output
from the crisp value ŷ(t+ 1) to the prediction interval I(t+ 1).

3.3.1 Forecasting Procedure

Step 1 Fuzzyfication: Compute the membership grade µti for each y(t) ∈ Y where t ∈ L
and each fuzzy set Ai ∈ Ã, such that µti = µAi

(y(t)).

Step 2 Rule matching : Select the K rules where all fuzzy sets Ai on the LHS have µti > α;
The rule fuzzy membership grade is shown below, using the minimum function as
T-norm.

µj =
⋂

t∈L i∈Ã

µti (3.10)

Step 3 Interval Defuzzyfication:

a) Rule intervals: Each chosen rule j will generate an interval Ij = [Ijmin, I
j
max]

where Ijmin is the minimum lower bound of all RHS fuzzy sets of the rule j and
Ijmax is the maximum upper bound of RHS fuzzy sets of rule j;

Iimin = min(A1, ..., Ak)

Iimax = max(A1, ..., Ak)

A1, ..., Ak ∈ RHS
(3.11)

b) Final Prediction Interval : The final forecast interval I(t+ 1) is calculated as
the sum of the rules intervals weighted by the membership value of each rule,
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as shown in Equation (3.12)

I(t+ 1) =

∑
j∈A µiIj∑
j∈A µj

=

∑
j∈A[µjIjmin, µjI

j
max]∑

j∈A µj
(3.12)

Step 5 Many steps ahead forecast :If the forecasting horizon is H > 1, define IH = {I(t+ 1)}
as the set of intervals and repeat the steps below for each h = 2..H, otherwise return
I(t+ 1).

a) Given I(t+ h− 1) = [l, u], call recursively the forecasting method, such that
Il = forecast(l) and Iu = forecast(u). The interval I(t+ h) is given by:

I(t+ h) = [min(Il),max(Iu)] (3.13)

b) Append I(t+ h) to IH and if h = H then return IH .

The generated interval I(t + 1) is bounded by a composition of the fuzzy sets
bounds on the FLRG’s which have some membership with the input value y(t) and is
expected to contain the true value ŷ(t+ 1). A sample of the method performance, for one
and many steps ahead, can be seen in Figures 14 and 15. In the next section a weighted
version of [I]FTS is presented.

y(t)
Forecast Interval

h = 1
𝕀f(t+1)

h < H

𝕀max = max( 𝕀f(t+h) )

𝕀min = min( 𝕀f(t+h) )

Forecast Interval

Forecast Interval

𝕀upper

𝕀lower

Combine

𝕀f(t+h) = [min(𝕀lower) , max(𝕀upper)]
𝕀f(t+h) h = h + 1

Figure 13 – [I]FTS many steps ahead interval forecasting procedure

3.3.2 Weighted [I]FTS

A weighted [I]FTS extension uses the same model building procedure of WHOFTS
method, presented in Section 2.7.3 and aims to construct the weighted FLRG rule base
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M. The prediction intervals are based on the weighted interval of the RHS fuzzy sets on
each FLRG weighted by their fuzzy membership in relation to input value.

W [I]FTS extension also changes the Steps 3.a of the Forecasting Procedure, replac-
ing the Equation (3.11) by the Equation (3.14), where Aj and Aj represents respectively
the lower and upper bounds of each fuzzy set Aj ∈ RHS:

Imin =
∑

j∈RHS wj · Aj

Imax =
∑

j∈RHS wj · Aj

(3.14)

Figure 14 – Sample of [I]FTS and W [I]FTS methods for one step ahead

Figure 15 – Sample of [I]FTS and W [I]FTS methods for many steps ahead

Different from [I]FTS, which considers the extremum of the fuzzy sets, the
generated interval I(t+ 1) of W [I]FTS is bounded by a weighted composition of the fuzzy
sets bounds, making it more sharper. A sample of the method performance, for one and
many steps ahead, can be seen in Figures 14 and 15.

Interval forecasts help to embrace the notion of forecast uncertainty, but did
not offer a complete landscape of the uncertainty. In the next sections, the probabilistic
forecasting is presented as a more embracing way to represent the uncertainty.
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3.4 Probability Distribution Forecasts

If the interval forecast represents a range of uncertainty, according to Krzysztofow-
icz [2001] the probabilistic distribution forecast “should quantify the total uncertainty that
remains about the predictand, conditional on all information utilized on the forecasting
process”.

The probability distribution forecasts cover the complete range of the U and
can be continuous, using a probability density function, or discrete using both a discrete
probability mass function or an empirical probability distribution, as histograms. In this
last case, U is split in n equal length sub-intervals bi - called bins -, which are associated
to a probability pi of occurrence, such as

∑n
i=1 pi = 1. The length of each bin is the unit

of discretization also referenced as the resolution of the distribution.

Probability distribution forecasts can be represented also as the empirical cumu-
lative probability distribution function F (x) = n−1

∑
i∈Y (t) 1(i < x) where 1(c) = {1 if

c = True; 0, otherwise }. Using α-level prediction intervals, described in Section 3.2, for
α ∈ [0.05, ..., 0.5], it is easy to construct the empirical distribution F by iteration over the
bounds of intervals. This approach was used to produce the distributions in Figure 12a,
from 7-steps ahead mean-variance prediction intervals over an ARIMA(2,0,0) model. The
same approach can be used to construct probabilistic forecastings using QAR method, as
shown in Figure 12b.

The Gaussian Process Regression (GPR), as discussed in Rasmussen and Williams
[2006] and Roberts et al. [2013], is an instance based parametric approach which interpolates
the instances y(t) ∈ Y and also produces an extrapolation for y(t + 1) in the form of
a Gaussian Distribution. A Gaussian Process GP(m,κ) is defined by a mean function
m(Y ) and covariance kernel κ(y(i), y(j)) which produce the covariance matrix Σ, such
that y(t + 1) ∼ N (m(Y ),Σ). The mean function m(Y ) is defined as the unconditional
expectation of Y , such that m(Y ) = E[Y ]. The covariance matrix Σ assigns the similarity
σij ∈ Σ between all pairs of instances of the time series, and it is defined by the covariance
function σij = κ(y(i), y(j)) for all i, j = 1..T . The covariance function is defined as
κ : U,U → R+ and measures the similarity between the two instances.

The covariance function κ is the most important parameter of GP model, and it
is responsible to measure how the instances relate with themselves and with time. κ is
usually defined by a set of parameters or hyperparameters θ, and because this κ is also
often written as κ(y(i), y(j)|θ) to make the dependence on θ explicit.

The most notable drawbacks of the GPR approach are the parametric assumption,
the non-sparsity, i.e., it uses the whole set of samples to perform one prediction which is
undesirable for Big Data scenarios. Even with the fast and direct aproaches developed
by Ambikasaran et al. [2014], that method still loses efficiency as the number of variables
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grows.

The Bayesian Structural Time Series (BSTS), discussed in Scott and Varian
[2014] and Barber et al. [2011], mix the well known State-Space models with the Bayesian
Statistics approach for parameter estimation. A structural time series is a state-space
model which associates the observed value y(t) with an unobserved latent state st. The
structure is defined by a system of equations where the observation equation (also known
as measurement equation) is defined in Equation (3.15) and the transition equation is
defined in Equation (3.16), and this system of equations can also be referred as a Linear
Gaussian Model.

y(t) =Ztst + εt εt ∼ N (0, Ht) (3.15)

st =Ttst−1 +Rtηt ηt ∼ N (0, Qt) (3.16)

An observed value y(t) is understood as a signal with noise, where the signal
is the product of the unobserved state st by the regressor parameter Zt, and the noise
(the extrinsic uncertainty) represented by the Gaussian error term εt whose variance is
controlled by the parameter Ht. The unobserved latent state st is represented by a vector
with the several components of the time series, as trend, seasonality, level, etc, and is
recursively defined by the transition matrix Tt and the Gaussian error term ηt (the intrinsic
uncertainty), which in turn is controlled by the vector Rt and the covariance matrix Qt.
The error terms εt and ηt are mutually independent. This state-space representation can
unify several approaches of time series forecasting and the parameters Zt, Tt, Ht, Rt and
Qt define the structure of the model, hereafter called as the Θ or the parameter space. For
instance, for an ARMA approach the regressors are represented by Zt and the coefficients
by Tt.

Once the state space model is defined, it is necessary to infer the values of Θ

parameters from the training data Y , keeping in mind that Y is a sample and it is
composed with several sources of uncertainty, so it will be also Θ. The Bayesian framework
is employed in this task, which represents all uncertainties as probability distributions,
from the learning process, passing through the parameter space Θ, to the prediction
space U . In such approach, the model parameters are probability distributions P (Θ|Y ),
reflecting the uncertainty around the real (but unknown) values of each parameter in
θ ∈ Θ given the learning sample Y . The forecast of ŷ(t+ 1) is a probability distribution
P (y(t+ 1)|Θ, Y ) that reflects the intrinsic uncertainty inherent of the time series Y , and
the extrinsic uncertainty of the unknown real parameter values P (Θ|Y ).

The learning of the parameter space Θ is guided by the Bayes Rule. It states
that, given a set of known evidences d ∈ D and a set of possible hypothesis h ∈ H, the
posterior distribution P (h|D) is given by the Equation (3.17), where P (H) is the prior
distribution, the P (D|h) is the likelihood, and P (D) is the normalizing term, such that



3.4. Probability Distribution Forecasts 71

P (D) =
∑

h∈H P (D|h)P (h) according to the Law of Total Probability.

P (h|D) =
P (D|h)P (h)

P (D)
=

P (D|h)P (h)∑
h∈H P (D|h)P (h)

(3.17)

The prior distribution P (H) assigns the knowledge about the chances of each
h ∈ H be the real value. The likelihood function L(h|D) assembles the plausibility of the
evidences d ∈ D to have been generated by the parameter h, and it is equals to P (D|h).

Some methods are available to estimate the best hypothesis h in the search space
H. The Maximum A Posteriori (MAP) principle poses the best hypothesis h ∈ H is that
one for which hMAP = arg maxH P (h|D). Given that P (D) is a constant and it is hard to
compute, it is eliminated from the calculation, considering just P (h|D) ∝ P (D|h)P (h).
The hMAP is used to update P (H) and improve the aproximation of P (H|D) as new
data is acquired. The Maximum Likelihood Estimation (MLE) method uses the average
log-likelihood function L̂(h|D) = |D|−1

∑|D|
i=0 lnP (di|h) as a cost function, such that

hMLE = arg maxH L̂(h|D) is the best estimate parameter h ∈ H. The drawback of these
estimators is to estimate a unique point value without representing the uncertainty around
the best hypothesis in H.

However, the great strength of the Bayesian Methods is its ability to represent the
uncertainties contained both on data and model parameters with probability distributions.
This is also the great drawback of Bayesian Methods: their expensive computational cost.
It is mainly because not all parts of its equation are always available – like the likelihood
function P (D|h) – and those values needs to be simulated using Monte Carlo methods.

The Monte Carlo (MC) methods, initially proposed in Metropolis and Ulam [1949],
are techniques to solve complex integration problems using random sampling. They aim to
generate a set of samples x1, . . . , xn from a target distribution π(x) in order to estimate
some hard-to-compute feature φ(x) using the expected value E[φ(x)] = n−1

∑n
i φ(xi) which

converges to the unobserved real value of φ. Given the estimated value as φ = E[φ(x)], and
its variance as φσ = V ar[φ(x)], some statistical concepts support the convergence of the
MC methods. The Law of Large Numbers (LLN) asserts that, for a large enough number
of samples n, the difference between the estimated value φ and the true value φ decays to
zero, or P (limn→∞ |φ− φ| = 0) = 1 . The Central Limit Theorem (CLT) states that, for a
large enough number of samples n, the φ is normally distributed as φ ∼ N (φ, φσ/n).

Markov Chain Monte Carlo (MCMC) methods improve the basic MC approach
aiming to, instead of sampling π(x) directly, sample from a Markov Chain with a transition
matrix K, where Ki,j = P (xt = i|xt−1 = j), such that the next sample xt be conditionally
dependent on the previous xt−1. The Markov Chain K needs to approximate the real π(x)

distribution, but estimating K is very often an intractable problem. An approximation
is provided by the Metropolis-Hastings algorithm generalized in Hastings [1970], which
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provide a simple and efficient way to simulate K and generate samples.

Estimating P (Θ|Y ) using Bayesian methods is an optimization task which employs
MCMC in order to sample from P (Y |Θ)P (Θ) distribution, while refining the parameters
of P (Θ). The method demands the choice of an appropriate a priori distribution P (Θ)

that will rule the search space of each parameter θ ∈ Θ. The likelihood P (Y |Θ) estimates
the fit of each parameter θ ∈ Θ when generating samples of y(t) ∈ Y . This likelihood is
itself another challenge once the samples y(t) ∈ Y may be identically distributed but are
not independent, there is a temporal dependence between y(t) and it’s past lags y(t−1), ...

that must be respected. This problem demands the use of advanced MCMC methods
as Sequential Monte Carlo, Sequential Importance Sampling and Particle Filters, deeply
discussed in Smith [2013].

Once Θ values were estimated and represented by probability distributions P (Θ|Y ),
the estimation of ŷ(t+1) will be represented by a probability distribution P (y(t+1)|Θ, Y ),
defined in Equation (3.18), which is also expensive to calculate and, again, needs to resort
to MCMC methods.

P (y(t+ 1)|Θ, Y ) =

∫
U

∫
Θ

P (y|θ, Y )P (Y |θ)P (θ)dydθ (3.18)

A small sample of the BSTS method is shown in Figure 12c, for 7 steps ahead
interval and probabilistic forecasting. If in one hand the Bayesian Structural Time Series
are well succeeded in representing the intrinsic and extrinsic uncertainties, on the other
hand it is complex to implement and computationally expensive to run, making it not
applicable for a variety of scenarios where the time performance is mandatory.

There are other approaches to embody the uncertainties of model parameters.
Monte Carlo methods itself evoke the idea of forecasting combination and Ensemble
Methods, as posed in Smith [2003], “In practice, ensemble forecasting is a Monte Carlo
approach to estimating the probability density function (PDF) of future model states given
uncertain initial conditions”. Forecast combination is not a new concept, see [Clemen, 1989],
and start from the idea to mix different sources to improve forecasting. This is sightly close
to the concept of Ensemble Methods defined by Gneiting [2008] as “an ensemble prediction
system consists of multiple runs of numerical weather prediction models, which differ in
the initial conditions”. Also Leutbecher and Palmer [2008] states that “The ultimate goal
of ensemble forecasting is to predict quantitatively the probability density of the state of
the atmosphere at a future time”.

Initially Ensemble Learning methods were developed to produce point forecasts
as combination of the individual model’s forecasts by a weighted average or more complex
methods as Bayesian Model Averaging, for instance Raftery et al. [2005]. Soon after, these
methods were adapted for probabilistic forecasting as in Gneiting et al. [2005], Leutbecher
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and Palmer [2008] and Fraley et al. [2013]. Xie and Hong [2016] proposed a methodology
for electric load probabilistic forecasting in three steps: pre-processing step consisting of
data cleaning; forecasting step using point-forecasting methods, forecast combination and
scenario-based probabilistic forecasting; post-processing step performing a simulation on
the residuals of the selected point forecasting models in order to improve the probabilistic
forecast.

These ensembles can be homogeneous (same method with different parameters) or
hybrid (different methods with different parameters). This set of modelsM receive a set of
parameters Θ to produce a set of forecasts ŷ(t+ 1), such as ŷ(t+ 1)i = mi(θi), ∀mi ∈M
and the θi ∈ Θ values are drawn of a prior probability distribution P (Θ). The methods
can be executed several times and the larger the sample is, the better approximations are
made. After n runs, the empirical distribution P (y(t+ 1)) of the outputs is available.

Ensemble Learning is a variation of the Ensemble Forecasting on Machine Learning
field, defined by Brown [2010] as “the procedures employed to train multiple learning
machines and combine their outputs with individual predictions combined appropriately,
should have better overall accuracy, on average, than any individual committee member”.
Ensemble Learning can be used in classification in regression tasks, also time series
forecasting as in Chen and Zhang [2005], Bai et al. [2010] and Grmanová et al. [2016].

This concept is exploited in Mohammed et al. [2015] and Mohammed and Aung
[2016], which proposed an ensemble learning approach for solar power probabilistic fore-
casting based on k-Nearest Neighbors, Regression Trees, Random Forests and regression
methods. Given an ensemble with k models and taken the ordered set of the k individual
forecasts, the probabilistic forecast is constructed as an empirical cumulative distribution
F , calculated with the percentiles of the individual forecasted values. F can be made with
three approaches: quantile linear interpolation, normal distribution and normal distribution
with initial different conditions. The linear interpolation approach calculates the τ quantile
position rτ on the individual forecasts as rτ = kτ

100
+ 0.5. The normal distribution approach

is similar to mean-variance model of section 3.2. With the set of individual forecasts the
mean µ and the variance σ are calculated, and the τ quantile is given by τ = µ+ zτ · σ.
The third approach is specific for the application domain of solar power.

The advantage of Mohammed et al. [2015] approach is the flexibility and ease of
implementation, since the individual models can be replaced (or added) for any other point
forecaster, for instance, any FTS method. As more models are added to the ensemble, better
will be the probabilistic distributions but also become more computationally expensive.

Other distributions generating techniques for ensemble forecasts exist as Kernel
Density Estimation [Hong et al., 2016] and Kernel Dressing [ [Pinson and Madsen, 2009]
and [Bröcker and Smith, 2008]] and can be easily combined with instance-based methods as
k-nearest neighbors. Both approaches smooth the discrete values in a continuous function
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Kernel Definition
Triangular K(u) = 1− |u|
Tophat K(u) = 1

2
I(|u| < 1)

Epanechnikov K(u) = 3/4(1− u2)

Gaussian K(u) = 1√
2π
e−1/2u2

Table 9 – KDE Kernels

that approximates the empirical distribution of data, as exposed in Equation (3.19), where
Y is the set of individual forecasts, K is the kernel function and h is a smoothing parameter
also known as bandwidth.:

P (x) = (nh)−1
∑
i∈Y

K

(
x− i
h

)
(3.19)

A kernel function K have to be a non-negative, real-valued, symmetric, integrable
and normalized, such that

∫ +∞
−∞ K(u)du = 1. A review of density estimation methods can

be found in Silverman [1986] and a specific study on estimation of h parameter can be
found in Sheather and Jones [1991]. A small sample of the kNN with KDE approach is
shown in Figure 12d, for 7 steps ahead interval and probabilistic forecasting.

The several methods discussed in this section are spread in the literature. In the
next section accuracy measures for probabilistic forecasting are discussed.

3.4.1 Accuracy Measures for Probabilistic Forecasts

As the probabilistic forecast provides the landscape of uncertainty for the whole
U , it is also possible to use the accuracy measures presented in Sections 2.8.1 and 3.2.1 to
assess its accuracy. A probability distribution can be reduced to a point using its expected
value E or it’s median m = F (.5). In both cases, the point forecasting accuracy values can
be used to assess its accuracy.

A probability distribution P can also be expressed in terms of intervals as well, by
using α-levels and their respective quantiles. In this case, the prediction interval accuracy
measures can be used to evaluate P accuracy in several different α, in the many different
aspects discussed in Section 3.2.1.

But pure probabilistic accuracy measures intend to assess how well the probabilities
of P are spread over U when we know the true value y(t), and how close P were able to
predict the uncertainty around y(t). The most simple probabilistic forecasting measure
is the Logarithm Score (LS), proposed in Good [1952] and defined in Equation (3.20),
which indicates how strong was the probability distribution P to predict the real value
y(t). The Logarithm Score presents some limitations as, for instance, when P (y(t)) = 0
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then LS(P, y(t)) =∞.

LS(P, Y ) = T−1

T∑
t=1

−log(P (y(t))) (3.20)

The Brier Score (BS), proposed in Brier [1950] and defined in Equation (3.21), was
originally defined for R categorical events but it is possible to extend it for numeric values
by splitting the Universe of Discourse in R bins, or to consider the quantiles. This score
can be interpreted as the Mean Squared Error (MSE) from the predicted probabilities for
each bin r, represented by P (r), to the real observed events represented by 1{y(t) ∈ r}.

BS(P, Y ) = T−1

T∑
t=1

R∑
r=1

(P (r)− 1{y(t) ∈ r})2 (3.21)

The metric chosen to assess the distributions is the Continuous Ranked Probability
Score (CRPS). CRPS is a proper measure for probabilistic forecasts, defined by Gneiting
and Raftery [2007] as Equation (3.22) for one forecast and by Gneiting and Raftery [2007]
as Equation (3.23) for more than one forecasts. CRPS provides a direct way to benchmark
probabilistic forecast since it is expressed in the same unit as the observed variable and
is a generalization of the Mean Absolute Error (MAE). Therefore, the perfect score for
CRPS, as in MAE, is 0.

CRPS(F, x) =

∫ +∞

−∞
(F (y)− 1{y ≥ x})2dy (3.22)

CRPS(F, x) =
1

N

N∑
t=1

∫ +∞

−∞
(Ft(y)− 1{y ≥ xt})2dy (3.23)

where F is the cumulative distribution function (CDF) of the forecasted distribution, x
is the true value and 1{y ≥ x} is the Heavyside function representing the CDF of this
punctual value.

3.4.2 Fuzzy Time Series Methods With Probabilistic

Background

The first studies to make the relationship of probabilities with fuzzy sets came
from Prof. Zadeh, Zadeh [1968], Zadeh [1984], which defines the fuzzy set probability as
the expectation of the membership function. Also, Klement, Schwyhla and Lowen Klement
et al. [1981] and Dubois and Prade [1989] explore the relationships between the fuzzy
membership functions and the probability measures based on Measure Theory.
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These theoretical works form the basis of the Fuzzy Stochastic Fuzzy Time Series
(FSFTS) of Song, Leland and Chissom Song et al. [1997], where three models were presented
but there is no empirical analysis of their results. In their work the probability space [0, 1]

is also described by a linguistic variable P̃ with few fuzzy sets that describe the probability
in linguistic terms like “low”,“medium”,“high”. The rules of the model are composed by
tuples (pj, Aj) where pj ∈ P̃ and Aj ∈ Ã and the deffuzyfication weights the fuzzy sets by
their fuzzy probability.

Gangwar and Kumar [2014] proposed the Probabilistic and Intuitionistic Fuzzy
Time Series - PIFTS method, strongly based on data normality and explicit Gaussian
Process assumption. Cheng and Li [2012] and Chuang et al. [2014] use the Song and
Chissom relation matrix and a Hidden Markov Chains for generating simulations for
forecasting step, the Probabilistic Smoothing Hidden Markov Model FTS - psHMM-FTS,
which has high computational cost.

3.5 The Ensemble FTS Method

The [I]FTS represented the forecasting uncertainty using the mean of the bounds
of the fuzzy sets, or the empirical uncertainty, without any probabilistic sense. However,
the FTS methods use of several ways to represent the time series uncertainties, as the
number of partitions k, order Ω, lag indexes L, rule weights. There are uncertainties
surrounding these values due to the ontological uncertainty of the data, uncertainties that
will be reduced – but not removed – after the hyperparameter optimization proposed in
Chapter 5.

A way to encompass these uncertainties is to generate a meta modelM, composed
with several FTS models m ∈M, such that each one of these individual models is trained
with different values of FTS hyperparameters, which aim to represent the hyperparameter
uncertainty and its effects. The aggregation of the individual forecasts ŷ(t+ 1)m produced
by each m ∈ M can represent the overall probabilistic uncertainty P over the possible
values of y(t+ 1) ∈ U using kernel density estimation seen in Section 3.4.

Several approaches can be adopted to represent the uncertainty of the hyperpa-
rameter, from varying the number of partitions and order, passing through varying the
partitioning methods, until varying the FTS method itself. However, the present approach
adopts a conventional rule-based high order FTS method with a Grid partitioning method,
varying only the number of partitions k and order Ω.

On EnsembleFTS the hyperparameters k and Ω are intervals and not scalar values.
During the training procedure, explained in Section 3.5.1 an FTS model will be trained
for each combination of individual values in the Cartesian Product of k and Ω. In the
forecasting procedure detailed in Section 3.5.2, the input sample is presented for all internal
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models and their outputs are aggregated using a KDE, producing a probability distribution
P : U → [0, 1]. Besides k and Ω ranges, the kernel function K and its bandwidth parameter
h are also parameters of the model.

3.5.1 Training Procedure

The aim of the training procedure is to build an ensembleM with k×Ω individual
models mi, given a crisp training set Y . The overall training procedure is shown in Figure
16 and it is composed of the following steps:

RANGE OF 
PARTIT. - k

RANGE OF 
ORDERS - Ω

CRISP
DATA - Y

PARTITIONING

FUZZYFIED
DATA - Fκ

FUZZYFICATION

RULE INDUCTION

Ensemble 𝓜

Model - mκ,ωModel - mκ,ωMODEL - mκ,ω

∀ κ,ω ∈ k × Ω  

Model - mκ,ωModel - mκ,ωFUZZY SETS 
Ãκ

Figure 16 – Ensemble FTS training procedure

Step 1 Main Loop: For each pair (κ, ω) created by the cartesian product of each κ ∈ k with
each ω ∈ Ω, repeat Steps 2 to 5;

Step 2 Partitioning : Create a linguistic variable Ãκ over U with κ fuzzy sets using the Grid
partitioning method and triangular µ;

Step 3 Fuzzyfication: Fuzzyfy the crisp time series Y using the linguistic variable Ãκ, creating
the fuzzyfied time series data Fκ;

Step 4 ω-order model : With Fκ, use the high order weighted rule knowledge model to infer
ω-order fuzzy rules and compose the model mκ,ω;

Step 5) Ensemble: Append the model mκ,ω onM;
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3.5.2 Forecasting Procedure

With the ensembleM built as in previous section, and given an input test sample
y(t), it is desired to forecast a full probability distribution P (y(t+ 1)|y(t)). The overall
process is described in Figure 17 and is composed of: a) the forecasting of individual
models; b) forecast selection and c) distribution smoothing with the KDE. The complete
procedure is detailed below:

KERNEL DENSITY 
ESTIMATION

SELECTION

Ensemble 𝓜

Model - mκ,ωModel - mκ,ωMODEL - mκ,ω

Model - mκ,ωModel - mκ,ω
FUZZY SETS 

Ãκ

CRISP SAMPLE - 
y(t)

CRISP FORECASTS - ŷ
(t+1)

PROBABILITY DISTRIBUTION - P

KERNEL
K

BANDWIDTH 
h

INTER 
QUANTILE α 

Figure 17 – Ensemble FTS forecasting procedure

Step 1 Individual forecasts: The input sample y ∈ Y is presented to each internal model
mj ∈M, which in turn will produce an individual forecast ŷj(t+ 1). The set of crisp
forecasts is hereafter called ŷ(t+ 1).

Step 2 Forecast selection: In order to control the total forecast variance and eliminate the
effect of possible outliers the forecasted output is limited by an inter quantile interval
(α, 1 − α) where α ∈ (0, 1) is the confidence level. By varying α parameter it is
possible to fine tune the final distribution accuracy by eliminating forecasts that are
too distant from the mean.

Step 3 Kernel density estimation: The set of crisp forecasts ŷ(t+ 1) is used with a kernel
density estimator K to estimate the probability distribution Pt+1 : U → [0, 1]. Two
parameters are necessary on this step: the type of kernel and the bandwidth h.
Both parameters are domain specific and need to be empirically evaluated for each
application.
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Step 4 Many steps ahead forecast :If the forecasting horizon is H > 1, define PH = {Pt+1}
as the set of intervals and repeat the steps below for each h = 2..H, otherwise return
Pt+1.

a) Find the quantiles Q = {.1, .2, .3., .4, .5, .6, .7, .8, .9} of the last max(Ω) fore-
casted sets ŷ(t−ω), ∀ω ∈ Ω, such that ŷQ(t−ω) = {Qτ (ŷ(t−ω)|τ ∈ Q) where
Q is the Quantile Function;

b) Apply a Cartesian Product between the quantiles of the last max(Ω) forecasted
sets, such that Ŷ =

∏
ω∈Ω ŷQ(t− ω);

c) Use each sample ŷ(t) ∈ Ŷ as input to Step 1 and 2 and aggregate all the results
on the set ŷ(t+ 1)

d) Use ŷ(t+ 1) with Step 3 to produce Pt+h and include it on PH . If h = H then
return PH .

The probabilistic forecast P (y(t+ 1)|y(t)) aims to represent ŷ(t+ 1) ∈ U uncer-
tainties of the modelM in relation to k and Ω. A sample of the EnsembleFTS for one
step and many steps ahead forecasts can be seen in Figures 18 and 19.

Figure 18 – Sample of EnsembleFTS performance for one step ahead

3.6 Computational Experiments

In this section an empirical study of the performance of the proposed methods is
presented using three economic time series. Initially, the datasets, design of experiments
and statistical tests employed are discussed. In Section 3.6.1, the accuracy sensitivity
regarding to the hyperparameters of the proposed methods are analyzed using a grid
search. In Section 3.6.2 the results of the interval forecasting experiments are presented
and discussed and then, in Section 3.6.3, the probabilistic forecasting experiments are
analyzed.
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Figure 19 – Sample of EnsembleFTS performance for many steps ahead

To measure the performance of the proposed models, ARIMA, QAR, kNN/KDE
and, BSTS were chosen as competitor models due to its possibility to perform interval
and probabilistic forecasting for many steps ahead. The hyperparameters of each method
were individually investigated and only the best model is considered in the validation of
the results.

For these experiments three well known financial time series data (the TAIEX,
S&P 500 and NASDAQ data sets) were selected, each of them with 5000 instances, whose
descriptions and properties can be found at Appendix A. A rolling window cross-validation
methodology Tashman [2000] was applied, using a working set of 1000 instances, 800 for
training (80%) and 200 for testing (20%) and a sliding increment of 200 instances, totaling
23 experiments, and all measurements were performed out of sample.

Once the model fine tuning was performed for each method and the experiments
were executed for each dataset, statistical tests were employed in order to compare the
performance of the models. The hypothesis testing procedures adopted best practices
discussed in García et al. [2010], Derrac et al. [2011], Trawiński et al. [2012]. The Friedman
Aligned Ranks test Hodges and Lehmann [1962] non parametric procedure was adopted
to test the equality of the means, where the null hypothesis H0 stands for the equality
of all means and the inability to distinguish between the methods and the alternative
hypothesis H1 stands for the difference of the means and the distinguishability among
the models. The paired post hoc procedure adopted was the Finner test Finner [1993],
in a one-versus-all design where the proposed methods are taken as control methods. In
Finner test the null hypothesis H0 stands for the equality between the control and the test
methods and the alternative hypothesis H1 stands for the significant difference between
the control and test methods. All the tests adopted the significance level α = .05 and were
performed on STAC framework Rodríguez-Fdez et al. [2015], and all FTS methods were
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tested with the pyFTS library1 Silva et al. [2018].

In order to contribute to the replication of all the results in the research, all data
and source codes employed in this chapter are available at the URL: http://bit.ly/
scalable_probabilistic_fts_chap3

3.6.1 Hyperparameter Grid Search

In order to assess the impact of the [I]FTS and W[I]FTS methods hyperpa-
rameters on the accuracy, a Search Grid was performed for each benchmark dataset,
using the search spaces contained in Table 10. The Winkler Score accuracy metric, where
α ∈ {.05, .25}, for each method, order, dataset and partitions can be observed in Figures
20 and 21. It is notable that [I]FTS has more sensitivity to the number of partitions
than W[I]FTS. This occurs because the length of the partitions is the mechanism used by
[I]FTS method to adjust the importance of each fuzzy set. Otherwise, W[I]FTS uses the
rule weights to balance the importance of each fuzzy set on deffuzyfication, diminishing
the impact of the partition length.

Given that several numbers of partitions and order values achieved very close
accuracy values, the Principle of Parsimony (or Occam’s Razor) was adopted to choose
the set of hyperparameters that leads to smallest number of rules |M|, keeping the same
accuracy. The chosen hyperparameters were k = 45 and Ω = 1 and a sample of the best
models performance can be seen in Figures 14 and 15.

Hyperparameter Search space
k {10, 15, 20, 25, 30, 35, 40, 45, 50}
Ω {1, 2, 3}

Table 10 – Hyperparameter search spaces for IFTS and WIFTS grid search

The EnsembleFTS method has a different hyperparameter set than [I]FTS and
W[I]FTS methods. As a meta-model, an internal FTS model should be chosen, in addition
to the k range and the Ω range. To reduce the complexity of this search space a set of
four models were predefined and detailed in Table 11. The accuracy of EnsembleFTS was
analyzed using both interval and probabilistic perspectives, the first one using the Winkler
Score interval accuracy metric, for α ∈ {.05, .25}, and second one using CRPS probabilistic
metric. The Winkler Score for each method and dataset is shown in Figures 22, where can
be observed that the Model 4 is the most stable model. The CRPS results are shown in
Figure 23, where it can be observed that Model 4 again is the most stable model. The
immediate conclusion is that the higher diversity of models help KDE to build a more
precise probability distribution, with improved sharpness and resolution. A sample of the

1 https://pyfts.github.io/pyFTS/. Access in 01/07/2018

http://bit.ly/scalable_probabilistic_fts_chap3
http://bit.ly/scalable_probabilistic_fts_chap3
https://pyfts.github.io/pyFTS/
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Figure 20 – IFTS Winkler Scores for α ∈ {.05, .25} by dataset, order and partitions

Model 4 performance can be seen in Figures 18 and 19, with α ∈ {.05, .25} prediction
intervals and probabilistic forecasting for 7 steps ahead.

Name Internal Model k range Ω range
EnsembleFTS Model 1 HOFTS {10, 20, 30, 40, 50} {1, 2, 3}
EnsembleFTS Model 2 HOFTS {10, 15, 20, 25, 30, 35, 40, 45, 50} {1, 2, 3}
EnsembleFTS Model 3 WHOFTS {10, 20, 30, 40, 50} {1, 2, 3}
EnsembleFTS Model 4 WHOFTS {10, 15, 20, 25, 30, 35, 40, 45, 50} {1, 2, 3}

Table 11 – Search spaces for Ensemble FTS grid search

3.6.2 Interval Forecasting Benchmarks

The Winkler Score Mean results for each method and dataset are presented
in Table 12. The Friedman Aligned Ranks of the methods are presented in Table 13
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Figure 21 – WIFTS Winkler Scores for α ∈ {.05, .25} by dataset, order and partitions

and the test statistic for these results is Q = 12.891861761426975, where the p-Value is
P (χ2

df < Q) = 0.04478569463323567, with df = 5 degrees of freedom. For this statistic the
H0 is rejected at the α = .05 confidence level, indicating that there is difference between
the means of the competitor models.

The post-hoc tests were employed using [I]FTS, W [I]FTS and EnsembleFTS
methods as control methods and their results are presented in Tables 14, 15 and 16,
showing there is no prevalence of the methods except of W [I]FTS over BSTS. These
results showed that [I]FTS, W [I]FTS and EnsembleFTS interval forecasting methods
perform satisfactorily when compared with the standard methods in the literature.

The statistical tests were employed on the one step ahead forecasts. Figure 24
shows, for each method and dataset, the impact of the forecasting horizon on the Winkler
Score accuracy.
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Figure 22 – Sample of IFTS and WIFTS for 7 steps ahead

Figure 23 – CRPS response of EnsembleFTS

Dataset ARIMA QAR WIFTS IFTS kNN EnsembleFTS BSTS

S&P 500 72.712 121.694 111.705 113.516 131.394 268.567 292.415
± 135.871 ± 319.305 ± 156.013 ± 91.627 ± 166.31 ± 318.259 ± 384.499

NASDAQ 233.261 106.416 123.35 284.692 170.709 603.881 652.036
± 486.735 ± 56.248 ± 141.251 ± 147.24 ± 156.097 ± 638.297 ± 963.624

TAIEX 858.124 340 480.581 917.879 428.484 898.531 1280.67
± 1337.139 ± 269.34 ± 561.826 ± 243.737 ± 269.459 ± 1175.107 ± 1472.031

Table 12 – Average Winkler Score with α = .05 for one step ahead interval forecasts

3.6.3 Probabilistic Forecasting Benchmarks

The CRPS Mean results for each method and dataset are presented in Table
17. The Friedman Aligned Ranks of the methods are presented in Table 18 and the test
statistic for these results is Q = 7.264833574529668, where the p-Value is P (χ2

df < Q) =

0.12253751253946543, with df = 4 degrees of freedom. For this statistic the H0 is accepted
at the α = .05 confidence level, indicating that there is no difference between the means of
the competitor models. This result discards the need to employ post-hoc tests and shows
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METHOD RANK
QAR 5.333333

WIFTS 5.666667
kNN 6.666667

ARIMA 10.000000
IFTS 13.666667

EnsembleFTS 16.666667
BSTS 19.000000

Table 13 – Friedman aligned ranks

COMPARISON Z-VALUE P-VALUE ADJUSTED P-VALUE Result

0 IFTS vs QAR 1.644879 0.099995 0.468540 H0 Accepted
1 IFTS vs WIFTS 1.579084 0.114317 0.468540 H0 Accepted
2 IFTS vs kNN 1.381699 0.167064 0.468540 H0 Accepted
3 IFTS vs BSTS 1.052723 0.292468 0.468540 H0 Accepted
4 IFTS vs ARIMA 0.723747 0.469221 0.532377 H0 Accepted
5 IFTS vs EnsembleFTS 0.592157 0.553746 0.553746 H0 Accepted

Table 14 – Post-hoc tests using IFTS as control method

COMPARISON Z-VALUE P-VALUE ADJUSTED P-VALUE Result

0 WIFTS vs BSTS 2.631807 0.008493 0.049889 H0 Rejected
1 WIFTS vs EnsembleFTS 2.171241 0.029913 0.087081 H0 Accepted
2 WIFTS vs IFTS 1.579084 0.114317 0.215565 H0 Accepted
3 WIFTS vs ARIMA 0.855337 0.392364 0.526342 H0 Accepted
4 WIFTS vs kNN 0.197386 0.843526 0.892023 H0 Accepted
5 WIFTS vs QAR 0.065795 0.947541 0.947541 H0 Accepted

Table 15 – Post-hoc tests using WIFTS as control method

that there is no prevalence of one method over others. The EnsembleFTS probabilistic
forecasting method performed satisfactorily when compared with the standard methods in
the literature.

The statistical tests were employed on the one step ahead forecasts. Figure 25
shows, for each method and dataset, the impact of the forecasting horizon on the CRPS
accuracy.

COMPARISON Z-VALUE P-VALUE ADJUSTED P-VALUE Result

0 EnsembleFTS vs QAR 2.237036 0.025284 0.142432 H0 Accepted
1 EnsembleFTS vs WIFTS 2.171241 0.029913 0.142432 H0 Accepted
2 EnsembleFTS vs kNN 1.973855 0.048398 0.142432 H0 Accepted
3 EnsembleFTS vs ARIMA 1.315903 0.188206 0.268577 H0 Accepted
4 EnsembleFTS vs IFTS 0.592157 0.553746 0.620249 H0 Accepted
5 EnsembleFTS vs BSTS 0.460566 0.645110 0.645110 H0 Accepted

Table 16 – Post-hoc tests using Ensemble FTS as control method
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Dataset QAR kNN ARIMA EnsembleFTS BSTS

NASDAQ 1.028 1.158 1.444 1.923 3.208
± 0.748 ± 0.477 ± 1.303 ± 1.416 ± 3.983

TAIEX 1.135 1.229 1.691 1.301 4.081
± 0.613 ± 0.693 ± 1.239 ± 1.118 ± 5.306

S&P 500 1.557 4.403 1.216 1.995 3.278
± 1.74 ± 3.261 ± 1.166 ± 2.255 ± 3.16

Table 17 – Average CRPS for one step ahead probabilistic forecasts

METHOD RANK

QAR 3.000000
ARIMA 6.666667
kNN 8.333333
EnsembleFTS 8.666667
BSTS 13.333333

Table 18 – Friedman Test aligned ranks

3.7 Conclusion

This chapter provided a brief introduction about point forecasting uncertainties
and the main kinds of probabilistic forecasting, reviewing the related literature and
proposed new FTS methods for forecasting intervals and probability distributions, which
were empirically assessed.

It is remarkable that point forecasts induce to overconfidence and, without uncer-
tainty measures, point forecasts can be compared to lottery games. It is well known that
all forecasting models have an irreducible uncertainty term, besides other not-known or
not managed uncertainties, and sometimes this information is critical for decision makers.

The Prediction Interval forecasts allow users to assess the uncertainty, delimit-
ing their expected bounds. Probabilistic forecasting methods assist users to know the
uncertainty associated with the entire Universe of Discourse. However, these probabilistic
forecasting methods can be computationally expensive and time consuming tasks. Also,
the cited models were not adapted to deal with fuzzy numbers as input. The available
methods in the FTS literature, at this point, are not capable to forecast prediction intervals
or probability distributions.

To exploit this gap it was proposed the Interval FTS - [I]FTS, the Weighted
Interval FTS -W [I]FTS, two new FTS approaches to bind the fuzzy uncertainty of the FTS
models, and the Ensemble FTS, the first FTS approach capable of to producing probability
distributions. In [I]FTS and W [I]FTS methods, the prediction interval I = [l, u] contains
the lower and upper bounds of all fuzzy sets involved on forecasting step, and the length
of this interval measures the fuzzy uncertainty.
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If [I]FTS and W [I]FTS methods deal only with the fuzzy uncertainty, the
Ensemble FTS method tries to represent the partitioning and ordering uncertainty to
produce probabilistic forecasts. The performed computational experiments showed that the
accuracy of the intervals and probability distributions provided by the proposed methods
do not differ from the standard methods of the literature, showing its reliability.

3.7.1 Methods limitations

The main strength of these methods is their flexibility. These approaches can be
used to extend all FTS methods to interval and probabilistic forecasting easily. However,
some drawbacks still persist. [I]FTS and W [I]FTS provide intervals, but not probability
distributions, and its intervals do not carry a probabilistic uncertainty. Moreover, it is not
parsimonious and is computationally expensive when compared to single FTS methods.
An integrated method for point, interval and probabilistic forecasting is yet demanded.

To fix these lacks, in the next chapter a new Fuzzy Time Series method with the
ability to represent epistemic and ontological uncertainty is proposed and its use for point,
interval, and probabilistic forecasting is examined.
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Figure 24 – Many steps ahead Winkler Score (with α = .05) accuracy for each method
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Figure 25 – Many steps ahead CRPS accuracy for each method
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Chapter 4

Probabilistic Weighted Fuzzy Time
Series

“Water is the softest thing, yet it can penetrate mountains and earth. This
shows clearly the principle of softness overcoming hardness.”

— Lao Tsu

This chapter proposes the Probabilistic Weighted Fuzzy Time Series (PWFTS)
method, a new FTS method for point, interval and probabilistic forecasting for one to many
steps ahead. The PWFTS method aims to produce forecasts by dealing with two sources
of uncertainty: fuzzy measurements and stochastic behavior. The fuzziness is induced
for a data reduction purpose, in a process that reminds a simple bin discretization. The
stochastic behavior is deduced by the frequentist approach over the previous fuzzyfication.

Regarding to fuzzy time series architectural design, discussed in Chapter 2, the
PWFTS method is a time invariant and heuristic method to produce probabilistic weighted
rules modelM. This method embodied all explored hyperparameters but their definition
involves more complex optimization methods, which will be explored in Chapter 5. Default
values were defined for hyperparameters, except k and Ω which must be determined by
the user, as shown in Table 19. These values, however, can be overridden by user.

Parameter Default Value
Ω User defined
k User defined
Π Grid
µ triangular

α-cut 0
L {1, . . . ,Ω}

Table 19 – PWFTS hyperparameter default values

The option for a weighted rule knowledge model has the objective to help in the
human readability and model explainability, also other knowledge extraction tasks. The
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weighted rule model will also help, as it will be seen in next chapters, in the distributed
processing of the method and on its multivariate extension.

The model rules (the Probabilistic Weighted FLRG’s) describe the most probable
future behavior (the RHS - right hand side of the rule) given some past behavior (the
LHS - left hand side of the rule). For a given data sample there will be many applicable
rules with different activations (the membership weights) and all of them are taken into
account.

The conception of this method combines the statistical approach of time series
forecasting with the FTS techniques. Given some stochastic process Y , their best predictor
is given by the conditional expectation E[y(t+ 1) | y(t), ...]. The FTS methods, especially
those ones based on Chen [1996], try to represent the behavior of Y process by splitting
their UoD in overlapping fuzzy sets, fuzzyfying the crisp data Y to transform it on the
fuzzy time series F and identifying the sequential patterns. The fuzzy sets are used to
define zones, or fuzzy states, at the universe of discourse which have a common set of rules.
That’s what FLRGs really are: rules that describe sequential patterns.

For a given FLRG with the form LHS → RHS, where F (t − 1) = LHS and
F (t) ∈ RHS our best predictor can be rewritten from E[F (t+1) | F (t), ...] to E[RHS|LHS].
The weights assigned to these rules are the frequentist probabilities of the fuzzy sets,
measured during the training phase.

Regarding the concepts introduced in Chapter 3, the PWFTPG can be seen as a
representation of a discrete empirical probability distribution. The RHS weights represent
the conditional probability P (Ai | LHS), ∀Ai ∈ RHS and the LHS weights represent the
unconditional a priori probabilities of the fuzzy sets. With the midpoints of each fuzzy
set and their probabilities it is possible then to compute the conditional expectation as a
forecast for F (t+ 1).

In the next sections this mechanism is detailed, starting in Section 4.1 which
discusses the basics of the fuzzy empirical probabilities. In Section 4.2 the training
procedure for first order model is presented, and in Section 4.3 the one step ahead method
for probabilistic, interval and point forecasting is presented. Section 4.4 presents extensions
for high-order models and many steps ahead forecasting. In Section 4.5 computational
experiments are performed to assess the performance of the model and finally, in Section
4.6, the main features of the proposed method are summarized.

4.1 Fuzzy Empirical Probabilities

The core concept of PWFTS is the fuzzy empirical probability, used to compute
the weights of the model, whose intuition is discussed in this section. The initial Zadeh’s
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Figure 26 – Fuzzy frequencies of each y(t) ∈ Y used to approximate the fuzzy empirical
probabilities P (Ai) for each fuzzy set Ai

proposition of fuzzy probability, P (A) = E[µA], proposed in Zadeh [1968], demands the
previous knowledge of the probability distribution over the universe of discourse. Since
this distribution for Y is unknown, an empirical distribution must take place. The simplest
definition of empirical probability is the relative frequency of a discrete value or of a range
of continuous values. Fuzzy Theory provides a different look at traditional Probability
Theory because it affects the way the events are counted.

On fuzzy sets the notion of event is more complex because the same value can
belong to several sets with different degrees of membership, as shown in Figure 26. In
that case, instead of accounting the integral (i.e. unary) occurrence of the event, their
partial occurrence is accounted using the membership value. This method is known by
fuzzy frequency, and was firstly developed in Luo and Bridges [2000]. A related formulation
can be found in Perfilieva [2006], with the concept of F-Transform, which decomposes
the original domain of the time series into fuzzy frequencies over the fuzzy sets. This
decomposition can also recreate the time series using the inverse transform.

Given the sample space U and the fuzzy sets Ã over U , the partition function
ZAj

, ∀Aj ∈ Ã, is the integral of the membership function µAj
over the sample space U ,

such that ZAj
=
∫
U
µAj

(y)dy or the discrete approximation ZAj
=
∑

y∈U µAj
(y). With ZAj

it is possible to approximate the empirical probability of a fuzzy set Aj ∈ Ã as the sum of
its memberships µAj

(y), ∀y ∈ U divided by the sum of the partition functions ZAj
of all

fuzzy sets Aj ∈ Ã, as presented in Equation (4.1).

P (Aj) =

∑
y∈U µAj

(y)∑
Aj∈Ã ZAj

(4.1)

The intuition behind this equation is that the empirical probability P (Aj) is
evenly spread over the shape of the fuzzy membership function µAj

, and the point y is a
slice of this shape whose area is equal to the value µAj

(y) (as shown in Figure 26), and the
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area of µAj
is ZAj

. P (Ai) is measured from a sample of Y , and this empirical value is an
approximation of the true (but unknown) probability. This approximation is used in (4.2)
to approximate the conditional probability of a value y ∈ U , given a fuzzy set Aj ∈ Ã:

P (y|Aj) = P (Aj) ·
µAj

(y)

ZAj

(4.2)

Using (4.1) and (4.2) and the Law of Total Probability the empirical probability
P (y) can be approximated using the Equation (4.3).

P (y, Ã) =
∑
Aj∈Ã

P (y|Aj) · P (Aj) (4.3)

The advantage of this approach is the convenience to obtain P (Aj) from a sample
of the time series dataset Y . The accuracy of P (Aj) is determined mainly by k, the number
of partitions of the universe of discourse U .

4.2 PWFTS Training procedure

The training procedure is a seven step method to learn the temporal dynamics of
the time series training data Y and represent it on a fuzzy-probabilistic model, namely
the Probabilistic Weighted Fuzzy Temporal Pattern Group - PWFTPG. The steps of the
method are listed below :

Step 1 Define the universe of discourse: Define U as the sample space of in-sample training
data Y , such that U = [min(Y )−D1,max(Y ) +D2], where [min(Y ),max(Y )] is the
range of in-sample data and D1 and D2 are numbers used to extrapolate this range,
for instance D1 = 0.1 ·min(Y ) and D2 = 0.1 ·max(Y );

Step 2 Partitioning : split U in k even length intervals ui, for i = 1, . . . , k, with midpoints
mpi;

Step 3 Define the linguistic variable Ã: Create k overlapping fuzzy sets Aj , with membership
functions µAj

, related to an interval uj, and midpoints mpj. Each fuzzy set Aj ∈ Ã
is a linguistic term of the linguistic variable Ã;

Step 4 Fuzzyfication: Transform the original numeric time series Y into the FTS F , whose
each data point f(t) ∈ F is a k-tuple with the membership value of y(t) with respect
to each linguistic term Aj ∈ Ã, such that:

f(t) = [µA1(y(t)), µA2(y(t)), . . . , µAk
(y(t))] (4.4)
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Step 5 Generate the FTP set : The Fuzzy Temporal Pattern - FTP1 is a fuzzy rule with
format Ai → Ak that indicates a temporal succession where the precedent (or the Left
Hand Side - LHS) is Ai ∈ f(t) and the consequent (or the Right Hand Side - RHS) is
Ak ∈ f(t+1), for each possible pair of Ai×Ak of membership values greater than zero,
i.e., {Ai → Ak} ∀Ai ∈ f(t) | µAi

(y(t)) > 0 and ∀Ak ∈ f(t + 1) | µAk
(y(t + 1)) > 0.

. Therefore, Ai → Ak can be read as “IF y(t) is Ai THEN y(t+ 1) is Ak”. As each
f(t) ∈ F is a sparse k-vector of membership values, there will be many possible
fuzzy sets combinations of two sequential vectors f(t) and f(t+ 1). Then for each
sequential pair on F possibly more than one FTP will be generated;

Step 6 Generate the FTPG set : A Fuzzy Temporal Pattern Group - FTPG2 represents the
set of all FTPs with the same LHS and the union of their RHS, with the format
Ai → Ak, Aj, ..., where the LHS is f(t) = Ai and the RHS is f(t+ 1) ∈ {Ak, Aj, ...}.
Each FTPG can be understood as the set of possibilities which may happen at time
t+ 1 (the consequent) when a certain set Ai is identified at time t (the precedent).

Step 7 Calculate empirical probabilities : The Probabilistic Weighted FTPG - PWFTPG adds
weights on the LHS and the RHS that measure their fuzzy empirical probabilities.
Each PWFTPG has the format πj · Aj → wj0 · A0, ..., wjk · Ak for j = 1, . . . , k. The
set of all PWFTPG, shown in Equation (4.5), form the modelM. Its size depends
on the number of partitions k, and it could be represented in matrix form but the
weights wij form a very sparse matrix, which justifies using optimized data structures
for its representation.

π1 · A1 → w11 · A1, ..., w1k · Ak
. . . . . . . . .

πk · Ak → wk1 · A1, ..., wkk · Ak
(4.5)

Each weight πj is associated with the fuzzy set in the LHS of the rule, and it is the
normalized sum of all LHS memberships of all FTPs where the LHS is the fuzzy set
Aj , as in Equation (4.1). πj can be understood as the empirical a priori probability of
the fuzzy set Aj independent of time, or P (Aj), such that the condition of Equation
(4.6) must be satisfied for the PWFTPG set in Equation (4.5).

∑
j∈Ã

πj = 1 (4.6)

Each weight wji is associated with a fuzzy set Ai on the RHS of the FTP whose
the LHS is Aj, and it is the normalized sum of all RHS memberships of all FTPs

1 This nomenclature is adopted in replacement of Fuzzy Logical Relationships (FLR) used in Song and
Chissom [1993b], to avoid misunderstandings with the terms “logical" and “relationship" with their
classical meanings in fuzzy theory literature.

2 In replacement of Fuzzy Logical Relationship Group - FLRG used in Chen et al. [2006].
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where LHS = Aj and RHS = Ai. Therefore, the weight wji can be understood as
the empirical conditional probability of the fuzzy set Ai on time t+ 1 when the fuzzy
set Aj is identified on time t, or P (At+1

i | Atj), such that the condition of Equation
(4.7) must be satisfied for each Aj in LHS.

∑
i∈Ã

wji = 1 ∀Aj ∈ Ã (4.7)

The outcome of the Training Procedure is the PWFTPG set, whose simple example
can be seen in Figure 27, and it represents the temporal dynamics of the original data. It
is an empirical probability distribution of the linguistic variable A over the time series Y
with sample space U , where each rule contains the unconditional probability P (Aj) = πj

and conditional probabilities P (Ai|Aj) = wji, for Ai, Aj ∈ Ã, as illustred in Figure 28.

0.005 · A0 → 0.4 · A0, 0.6 · A1
0.05 · A1 → 0.05 · A0, 0.6 · A1, 0.35 · A2
0.11 · A2 → 0.1 · A1 , 0.6 · A2, 0.3 · A3
0.14 · A3 → 0.15 · A2, 0.6 · A3, 0.25 · A4
0.15 · A4 → 0.2 · A3, 0.55 · A4, 0.25 · A5
0.1 · A5 → 0.2 · A4, 0.55 · A5, 0.25 · A6

0.12 · A6 → 0.2 · A5, 0.6 · A6, 0.2 · A7
0.09 · A7 → 0.25 · A6, 0.55 · A7, 0.2 · A8
0.06 · A8 → 0.25 · A7, 0.6 · A8, 0.15 · A9
0.02 · A9 → 0.6 · A8, 0.4 · A9

Figure 27 – Example of PWFTPG model generated with k = 10 and a random Y dataset

4.3 Forecasting Procedure

The forecasting procedure is a four step procedure listed in this section, which
takes as input the forecasting type, a sample y(t) ∈ U and uses the PWFTPG model
M learned in the previous section to generate the output, which depends on the type of
forecasting (probabilistic, interval or point forecasting). The complete forecasting procedure
is presented below:

Step 1 Fuzzyfication: For a given input value y(t) ∈ Y , find the fuzzyfied values f(t) =

{Aj | µAj
(y(t)) > α};

Step 2 Pattern matching : Locate all the PWFTPG’s whose the LHS is f(t).

Step 3 Forecast : The distribution of f(t+ 1) is given by the RHS sets of each PWFTPG
matched;

Step 4 Defuzzyfication:
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Figure 28 – Probability distributions representation of a PWFTPG model generated with
k = 10 and a random Y dataset, where πj weights represent the LHS empirical
probabilities and wji weights represent the RHS empirical probabilities.

a) If the forecasting type is Probabilistic, then build the probability distribution
P (y(t + 1)|y(t)), ∀y(t + 1) ∈ U applying Equation (4.9) presented in Section
4.3.1;

b) If the forecasting type is Interval, then build the prediction interval I(t + 1)

applying Equation (4.12) presented in Section 4.3.2;

c) If the forecasting type is Point, then build the crisp estimate ŷ(t+ 1) applying
Equation (4.14) presented in Section 4.3.3;

4.3.1 Probabilistic Forecasting Procedure

A probability distribution P (y(t+ 1)|y(t)), for all y(t+ 1) ∈ U can be computed
using a Mixture Distribution approach to transform each PWFTPG probability into a
continuous distribution, as described in Equation (4.9).

A mixture distribution is defined as P (y) =
∑
ωj · πj(y) where πj : U → [0, 1]

are specific PDFs and ωj is a weight associated to each PDF, such that
∑
ωj = 1. Given

an input value y(t) ∈ Y and the PWFTPG set, the probability distribution for each
y(t+ 1) ∈ U is given by (4.9), where ωj is replaced by the probability P (y(t)|Ai), the LHS
probability given the input value, and the distribution πj is replaced by the probability
P (y(t+ 1)|Aj, Ai), ∀Aj ∈ RHS.
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Looking back to Equation (4.2), it is clear that
∑

Aj∈Ã P (y(t)|Aj) < 1, once P (Ai)

is the probability of the whole fuzzy set and y(t) is just a small slice of it, thus it does not
comply with the

∑
ωj = 1 restriction of the mixture distribution. To work around this

issue P (y(t)|Aj) is re-scaled using Equation (4.8).

P (y(t)|Aj)∑
Aj∈Ã P (y(t)|Aj)

(4.8)

Therefore, the final conditional probability P (y(t+ 1)|y(t)), given the linguistic
variable Ã and a PWFTPG setM, is defined in Equation (4.9) and illustrated in Figure
29. A sample of the PWFTS probabilistic forecasting for one step ahead can be seen in
Figures 30 and 31.

P (y(t+ 1)|y(t)) =
∑
Aj∈Ã

P (y(t)|Aj)

(
k∑
i=1

P (y(t+ 1)|Ai, Aj)

)
k∑
i=1

P (y(t)|Ai)

=
∑
Aj∈Ã

πj
µAj

(y(t))

ZAj

(
k∑
i=1

wji
µAi

(y(t+ 1))

ZAi

)
k∑
i=1

πi
µAi

(y(t))

ZAi

(4.9)

4.3.2 Interval forecasting procedure

A forecasting interval I(t+ 1) can be produced from P (y(t+ 1)|y(t)), given that it
is possible to build a cumulative density function F (y(t+ 1)|y(t)) and use it to construct
the quantile function Q(τ) : [0, 1]→ U , as shown in Equation (4.10) where τ ∈ [0, 1] is the
desired quantile. Then, for a certain confidence level α ∈ [0, 1], it is possible to compute
an inter quantile interval If = [Q(α), Q(1− α)].

Q(τ) = min{x ∈ U | F (x|y(t)) = τ} (4.10)

However, the above method demands the previous computation of the whole
probability density function P (y(t + 1)|y(t)), which is computationally expensive for
larger input samples. A simpler and faster heuristic for generating prediction intervals
extends the method W [I]FTS, proposed in Section 3.3.2, to exploit the structure of the
PWFTPG weights. Each PWFTPG will be represented by an interval I whose bounds are
the expectation of the bounds of its RHS fuzzy sets, such that Aj and Aj represent the
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∀ y(t+1) ∈ U

Figure 29 – Representation of PWFTS probabilistic forecasting procedure, where the
length of blue boxes represents the magnitude of πj weights and the height of
yellow boxes represents the magnitude of ωji weights.

Figure 30 – Sample of PWFTS for one step ahead forecasting

lower and upper bounds of the fuzzy set Aj , and E[Aj ] is the expectation of the PWFTPG
where the LHS is Aj . The forecasting interval I(t+ 1) then is the sum of these expectations
weighted by the P (y(t)|Aj) probabilities, as presented in Equation (4.12). A sample of the
PWFTS interval forecasting for one step ahead can be seen in Figure 30.

Ij = [E[Aj] , E[Aj]]

E[Aj] =
∑

Ai∈ARHS
j

wji · Ai
E[Aj] =

∑
Ai∈ARHS

j
wji · Ai

(4.11)
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Figure 31 – Shapes of PWFTS probability distributions for one step ahead forecasting

I(t+ 1) = [E[Ã|y(t)] , E[Ã|y(t)]]

=

[∑
Aj∈Ã P (y(t)|Aj) · Ij∑
Aj∈Ã P (y(t)|Aj)

,

∑
Aj∈Ã P (y(t)|Aj) · Ij∑
Aj∈Ã P (y(t)|Aj)

] (4.12)

4.3.3 Point forecasting procedure

To produce point forecasts ŷ(t+ 1) from the existing distribution P (·|y(t)) it is
only needed to apply the expectation operator, such that ŷ(t+ 1) = E[P (y(t+ 1)|y(t))].
This is also computationally expensive due to the computation of P (y(t + 1)|y(t)). A
simple heuristic for producing point forecasts is to compute the expectation E[Aj] of each
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PWFTPG, as presented in Equation (4.13), where mpi is the midpoint of each fuzzy
set Ai ∈ RHS. The expectation E[Aj] for each PWFTPG Aj is constant and can be
pre-computed. The final forecast ŷ(t+ 1) then is the sum of these expectations weighted
by P (y(t)|Aj) probability, as shown in Equation (4.14). A sample of the PWFTS point
forecasting for one step ahead can be seen in Figure 30.

E[Aj] =
∑

i∈ARHS
j

wji ·mpi (4.13)

ŷ(t+ 1) = E[Ã|y(t)] =
∑
Aj∈Ã

P (y(t)|Aj) · E[Aj]∑
Aj∈Ã P (y(t)|Aj)

(4.14)

4.4 PWFTS extensions

In the next subsections the basic first-order and one-step-ahead method is extended
to higher orders and wider forecasting horizons in order to increase PWFTS method
flexibility and versatility.

4.4.1 Many steps ahead forecasting

The forecasting procedures listed in Section 4.3 are one step ahead methods. To
extend the forecasting procedures to many steps ahead forecasting, an iterative approach
is adopted, in which the t+ 1 step is computed with the previously presented methods
and its output is fed back as input to the next H steps. From the step t + 2 on, let
h ∈ [t+ 2, t+H] be the new time indexer. The simpler approach is to perform the point
forecast of y(h+ 1) with the input y(h).

The interval procedure requires a few more modifications. Given the input I(h) the
same interval forecasting procedure will be executed with inputs I(h) and I(h) producing
two new intervals I(h+ 1) and I(h+ 1). Then the final forecasting interval will be I(h+1) =

[min{I(h+ 1)},max{I(h+ 1)}].

Finally, the probabilistic forecasting for P (y(h + 1)|y(h)) given the input will
change to Equation (4.15), instead of Equation (4.9). This equation replaces P (y(h)|Aj)
for the previous probability distribution P (y(h)|y(h− 1)), as illustrated in Figure 32. A
sample of the PWFTS many steps ahead forecasting can be seen in Figure 33.

P (y(h+ 1)|y(h)) =
∑
Aj∈Ã

P (y(h)|y(h− 1), Aj)∑k
i=1 P (y(h)|y(h− 1), Ai)

×

(
k∑
z=1

P (y(h+ 1)|Az, Aj)

)
(4.15)
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Figure 32 – Many steps ahead probabilistic forecasting process

Figure 33 – Sample of PWFTS for 7 step ahead forecasting

4.4.2 High order models

The PWFTS method described in Section 4.2 is a first order method, i.e., it just
needs y(t) to forecast ŷ(t+ 1), while high order models use Ω time lags, whose indexes are
stored on vector L. To extend the standard approach to high order modification in Step 5
of the Training procedure is needed to adapt the FTPs and FTPGs to store Ω fuzzy sets
on their LHS.

Once the fuzzyfied value f(t) has multiple fuzzy sets (with different membership
values greater than α-cut), a set of fuzzyfied values f(t− L(Ω)), ..., f(t− L(0)) must be
represented with all possible combinations between the fuzzy sets of each lag, such as
f(t − L(Ω)) × f(t − L(Ω − 1)) × . . . × f(t − L(0)), where × represents the Cartesian
Product operator.

In Step 5 the FTPs will have the format AL(Ω)
j , A

L(Ω−1)
j , . . . , A

L(0)
j → Ai, which
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Figure 34 – Shapes of PWFTS probability distributions for many steps ahead forecasting

can be read as “IF f(t− L(Ω)) is AL(Ω)
j AND f(t− L(Ω− 1)) is AL(Ω−1)

j AND . . . AND
f(t − L(0)) is AL(0)

j THEN f(t + 1) is Ai”. In Step 6, the high order FTPGs gather all
high order FTPs with the same LHS.

In Step 7 the πj weight is replaced by πLHS that aggregates the µLHS memberships
of each FTPG for the samples. Given a sample y(t− Ω), . . . , y(t) ∈ Y with Ω lags, their
membership grades with an FTPG is the product T-norm between all memberships of the
LHS:

µLHS(y(t− L(Ω)), . . . , y(t− L(0)) =
0⋂

i=Ω

µAj
(y(t− L(i))) (4.16)

In the forecasting procedure, the Step 1 requires a sample with Ω lags that
will generate Ω fuzzyfied values. In Step 2, all combinations between the fuzzy sets of
each fuzzyfied lag will be the LHS of the affected PWFTPGs. In Step 3, in Equations
(4.9), (4.12) and (4.14), the empirical conditional probability P (y(t)|Ai) will be replaced
by P (y(t−m), ..., y(t)|LHS), the empirical conditional probability of the sample y(t−
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m), ..., y(t) given the LHS of the PWFTPG.

P (y(t− L(Ω)) . . . y(t− L(0)|LHS) = πLHS
µLHS(y(t− L(Ω)) . . . , y(t− L(0))∑

Aj∈LHS ZAj

(4.17)

4.5 Computational Experiments

This section presents an empirical study of the PWFTS performance using the
same datasets, design of experiments and statistical tests employed in Sections 2.8 and
3.6. PWFTS method can forecast points, intervals, and probability distributions, then the
following sections will present all these compared results.

To measure the performance of the proposed models, ARIMA, QAR, kNN/KDE,
and BSTS were chosen as competitor models due to its ability to perform point, interval
and probabilistic forecasting for many steps ahead. The hyperparameters of each method
were individually investigated and only the best model is considered in the validation of
the results. The HOFTS and WHOFTS methods were also used to compare the point
forecasts, using the best models determined in Section 2.8. The [I]FTS and W [I]FTS
methods were also used to compare the interval forecasts, and EnsembleFTS was also used
to compare probabilistic forecasts, using the best models determined in Section 3.6.

In Section 4.5.1, the accuracy sensitivity regarding to the hyperparameters of the
proposed methods are analyzed using a grid search. The result of the experiments are
presented in Sections 4.5.2 for point forecasting, 4.5.3 for interval forecasting and 4.5.4,
for probabilistic forecasting.

In order to contribute with the replication of all the results in the research,
all data and source codes employed in this chapter are available at the URL: http:
//bit.ly/scalable_probabilistic_fts_chap4

4.5.1 Hyperparameter Grid Search

In order to assess the impact of the hyperparameters on PWFTS accuracy, a
Grid Search was performed for each benchmark dataset, using the same search spaces
contained in Table 10 of Section 3.6.1. But, different from the previous experiments this
grid search was performed for point, interval and probabilistic forecasting, in order to
chose the hyperparameter values that best fit all cases.

The RMSE accuracy is shown in Figure 35, by order, number of partitions and
dataset. The Winkler Score accuracy, where α ∈ {.05, .25}, can be observed in Figure 36
and the CRPS accuracy in Figure 37.

http://bit.ly/scalable_probabilistic_fts_chap4
http://bit.ly/scalable_probabilistic_fts_chap4
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Since several numbers of partitions and order values achieved very close accuracy
values, the Principle of Parsimony (or Occam’s Razor) was adopted to choose the set of
hyperparameters that lead to the smallest number of rules |M|, keeping the same accuracy.
The chosen hyperparameters were k = 45 and Ω = 1 and a sample of the best models
performance can be seen in Figures 30 (for one step ahead) and 33 (for many steps ahead).

Figure 35 – RMSE accuracy for order, partitions and dataset

4.5.2 Point Forecasting Benchmarks

The RMSE results for each method and dataset are presented in Table 20. The
Friedman Aligned Ranks of the methods are presented in Table 21 and the test statis-
tic for these results is Q = 13.903114186851207, where the p-value is P (χ2

df < Q) =

0.030737356514312197, with df = 7 degrees of freedom. For this statistic the H0 is rejected
at the α = .05 confidence level, indicating that there is difference between the means of
the competitor models.

The post-hoc tests were employed using PWFTS as control methods and their
results are presented in Table 22, showing that there is no prevalence of PWFTS method
over all others. The mean difference detected by the Friedman Test occurred between
QAR and BSTS, where QAR prevails over BSTS with p-value of 0.006984, rejecting H0
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Figure 36 – Mean Winkler Score for α ∈ {.05, .25} by order, partitions and dataset

of post-hoc tests. These results showed that PWFTS point forecasting method performs
satisfactorily when compared with the standard methods in the literature.

The statistical tests were employed to one step ahead forecasts. Figure 38 shows,
for each method and dataset, the impact of the forecasting horizon on the RMSE accuracy.

Dataset ARIMA QAR PWFTS WHOFTS HOFTS kNN BSTS

S&P 500 6.091 8.177 10.541 12.822 13.605 19.242 380.466
±7.452 ±11.366 ±10.19 ±11.336 ±12.392 ±24.97 ±947.809

NASDAQ 22.592 17.951 24.839 27.154 29.713 34.742 413.494
±24.991 ±11.965 ±18.198 ±15.05 ±12.875 ±25.096 ±837.281

TAIEX 91.311 66.9 75.558 90.433 100.787 80.213 271.66
±63.249 ±44.369 ±56.739 ±58.93 ±62.932 ±56.494 ±250.078

Table 20 – RMSE for one step ahead point forecasts

4.5.2.1 Residual Analysis

The residuals of the models are presented in Figure 39 and the Ljung-Box tests
for the 3 first lags are presented in Table 23 , showing the good fit of the model.
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Figure 37 – CRPS accuracy by order, partitions and dataset

METHOD RANK
QAR 6.333333

ARIMA 7.333333
PWFTS 8.333333
WHOFTS 10.333333
HOFTS 12.000000
kNN 12.666667
BSTS 20.000000

Table 21 – Friedman aligned ranks for point forecasts

COMPARISON Z-VALUE P-VALUE ADJUSTED P-VALUE Result

0 PWFTS vs BSTS 2.302831 0.021288 0.121122 H0 Accepted
1 PWFTS vs kNN 0.855337 0.392364 0.775648 H0 Accepted
2 PWFTS vs HOFTS 0.723747 0.469221 0.775648 H0 Accepted
3 PWFTS vs QAR 0.394771 0.693012 0.829909 H0 Accepted
4 PWFTS vs WHOFTS 0.394771 0.693012 0.829909 H0 Accepted
5 PWFTS vs ARIMA 0.197386 0.843526 0.843526 H0 Accepted

Table 22 – Post-hoc tests using PWFTS as control method

4.5.3 Interval Forecasting Benchmarks

The Winkler Score Mean results for each method and dataset are presented in Table
24. The Friedman Aligned Ranks of the methods are presented in Table 25 and the test
statistic for these results is Q = 14.812664, where the p-Value is P (χ2

df < Q) = 0.038477,
with df = 7 degrees of freedom. For this statistic, the H0 is rejected at the α = .05

confidence level, indicating that there is a difference between the means of the competitor
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Lag Statistic p-Value Critical Value Result

1 34.846143 3.568157e-09 3.841459 H0 accepted
2 35.497255 1.958254e-08 5.991465 H0 accepted
3 35.871542 7.971605e-08 7.814728 H0 accepted

Table 23 – Ljung-Box Test for the 3 first lags

models.

The post-hoc tests were employed using PWFTS as control method and their
results are presented in Table 26, showing the prevalence of PWFTS over BSTS. These
results showed that PWFTS interval forecasting methods perform satisfactorily when
compared with other standard methods in the literature.

The statistical tests were employed on the one-step ahead forecasts. Figure 40
shows, for each dataset, the impact of the forecasting horizon on the Winkler Score accuracy
of PWFTS.

Dataset ARIMA PWFTS QAR WIFTS IFTS kNN EnsembleFTS BSTS

S&P 500 72.712 73.505 121.694 111.705 113.516 131.394 268.567 292.415
±135.871 ±99.09 ±319.305 ±156.013 ±91.627 ±166.31 ±318.259 ±384.499

NASDAQ 233.261 112.944 106.416 123.35 284.692 170.709 603.881 652.036
±486.735 ±33.666 ±56.248 ±141.251 ±147.24 ±156.097 ±638.297 ±963.624

TAIEX 858.124 348.647 340 480.581 917.879 428.484 898.531 1280.67
±1337.139 ±82.036 ±269.34 ±561.826 ±243.737 ±269.459 ±1175.107 ±1472.031

Table 24 – Average Winkler Score with α = .05 for one step ahead interval forecasts

METHOD RANK
PWFTS 6.000000
QAR 6.666667

WIFTS 7.666667
kNN 8.666667

ARIMA 13.000000
IFTS 16.666667

EnsembleFTS 19.666667
BSTS 21.666667

Table 25 – Friedman aligned ranks for interval forecasts

4.5.4 Probabilistic Forecasting Benchmarks

The CRPS Mean results for each method and dataset are presented in Table
27. The Friedman Aligned Ranks of the methods are presented in Table 28 and the test
statistic for these results is Q = 10.352711804324706, where the p-Value is P (χ2

df < Q) =

0.06583635032195168, with df = 5 degrees of freedom. For this statistic the H0 is accepted
at the α = .05 confidence level, indicating that there is no significant difference between
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COMPARISON Z-VALUE P-VALUE ADJUSTED P-VALUE Result

PWFTS vs BSTS 2.713546 0.006657 0.045677 H0 Rejected
PWFTS vs EnsembleFTS 2.367136 0.017926 0.061349 H0 Accepted
PWFTS vs IFTS 1.847521 0.064672 0.144442 H0 Accepted
PWFTS vs ARIMA 1.212436 0.225346 0.360355 H0 Accepted
PWFTS vs kNN 0.461880 0.644167 0.764634 H0 Accepted
PWFTS vs WIFTS 0.288675 0.772830 0.822550 H0 Accepted
PWFTS vs QAR 0.115470 0.908073 0.908073 H0 Accepted

Table 26 – Post-hoc tests using PWFTS as control method

the means of the competitor models. This result discards the need to employ post-hoc
tests and shows that there is no prevalence of one method over others, showing also that
PWFTS probabilistic forecasting method performed satisfactorily when compared with
the standard methods in the literature.

The statistical tests were employed on the one-step ahead forecasts. Figure 41
shows, for each dataset, the impact of the forecasting horizon on the CRPS accuracy of
PWFTS method.

Dataset PWFTS QAR kNN ARIMA EnsembleFTS BSTS

NASDAQ 0.882 1.028 1.158 1.444 1.923 3.208
±0.347 ±0.748 ±0.477 ±1.303 ±1.416 ±3.983

TAIEX 0.967 1.135 1.229 1.691 1.301 4.081
±0.404 ±0.613 ±0.693 ±1.239 ±1.118 ±5.306

S&P 500 1.257 1.557 4.403 1.216 1.995 3.278
±0.722 ±1.74 ±3.261 ±1.166 ±2.255 ±3.16

Table 27 – CRPS for one step ahead interval forecasts

METHOD RANK
PWFTS 3.333333
QAR 5.666667

ARIMA 8.666667
kNN 11.333333

EnsembleFTS 11.666667
BSTS 16.333333

Table 28 – Friedman aligned ranks for probabilistic forecasts

4.6 Conclusion

This chapter proposed a new univariate and time invariant FTS method – the
Probabilistic Weighted FTS (PWFTS) – a weighted rule-based FTS method which repre-
sents their temporal patterns with an empirical probability, based on the proposed concept
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of fuzzy frequency. The PWFTS rule model, the Probabilistic Weighted Fuzzy Temporal
Pattern Groups (PWFTPG), describes fuzzy and stochastic behavior of time series and
combines them to produce forecasts.

Among the methods already proposed for interval and probabilistic forecasting,
none of them integrate all these capabilities. The strength of PWFTS lies is its flexibility
and performance. This model is used to produce probability densities, prediction intervals
and point forecasting, with high order models and multiple-step ahead forecasting.

Computational experiments were performed to evaluate the accuracy of the
proposed model which showed equivalent or better performance than standard methods in
the literature. Its computational cost is low when compared with BSTS and EnsembleFTS
approaches and its interval accuracy is better than WIFTS and IFTS.

The proposed PWFTS method extends FTS methods to deal with interval and
probabilistic forecasting applications, which is the major contribution of this research.
Moreover, PWFTS improves on former FTS methods in the literature by considering
the concept of fuzzy frequency and empirical probabilities in the generation of the rule
knowledge base. The proposed method improves previous FTS methods by aggregating
probabilistic and interval forecasting capabilities into a single model, being useful for a
wide range of applications and user needs.

4.6.1 Method limitations

As in previous FTS methods, the PWFTS accuracy depends on the hyperparameter
fine tunning. The method does not embody this optimization and it is advisable that this
fine tunning be performed. Another issue about the model optimization is the parsimony:
PWFTS weights may vanish as the number of rules increases. The weights precision is
limited by the computational numerical precision.

In general all forecasting procedures are computationally cheap but the probabilis-
tic forecasting for multiple-steps ahead is computationally expensive and the forecasting
horizon H must be chosen carefully.
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Figure 38 – Impact of the forecasting horizon on RMSE accuracy
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Figure 39 – Residual analysis of PWFTS

Figure 40 – Impact of the forecasting horizon on Winkler Score accuracy

Figure 41 – Impact of the forecasting horizon on CRPS accuracy
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Chapter 5

Scalability And Hyperparameter
Optimization

“While we cannot accurately predict the course of climate change in the
coming decades, the risks we run if we don’t change our course are enormous.
Prudent risk management does not equate uncertainty with inaction.”

— Steven Chu

The previous chapters focused in forecasting tasks and its uncertainties and FTS
approaches were presented to deal with theses issues. However, the presented approaches
do not optimize its models for a given time series Y . The best hyperparameters must be
found by the user and then informed to the methods, task that was delegated until now to
an expensive Grid Search optimization.

As reviewed in Chapter 2, several approaches in the literature embody optimization
tasks in their training procedures. Nevertheless an holistic hyperparameter optimizer for all
FTS components present in Table 1 is still lacking in the literature. The most challenging
issue presented by this task is the choose of the partitioning method Π, which may use
computationally expensive meta-heuristics (and without known parallel or distributed
extensions), and the number of partitions k and order Ω that regulates the parsimony of
the model.

The optimization task becomes even harder when dealing with time series with
Big Data properties. Many of the traditional forecasting methods, and even some new
ones, were not designed to deal with such high volume of data. The most critical issues
are the high dimensionality (dozens of hundreds of attributes) and volume (hundreds of
millions or billions of samples), as pointed out in Qiu et al. [2016]. There is not a universal
consensus about the small, medium and big data sizes. By simplicity it can be considered
that it strongly depends on the available hardware capabilities.

In all cases Big Data starts to happen when it does not fit in the memory of a single
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machine. Such data volume, that cannot be grounded on a single machine memory, demands
a distributed architecture of storage and processing. New technologies are emerging to
tackle these issues, for instance the Map Reduce based frameworks Dean and Ghemawat
[2008], a divide-and-conquer approach which is the basis of Hadoop clusters White [2012],
where the processing units also act as storage units of the data subsets.

These distributed computation approaches have been determinant to enable the
processing of data-intensive and computationally expensive tasks. Thanks to the distributed
computation frameworks, soft-computing methods are now enabled to work with massive
datasets using cheap and available hardware infrastructure. Such kind of tasks are spread
over several areas in science and engineering, such as in weather and environmental datasets
and on smart sensor data of smart grids where, according to Coelho et al. [2016], there are
networks of smart sensors continuously monitoring all system components and streaming
historical data with high volume and velocity.

Applying Big Data to machine learning algorithms is a trending topic in recent
years, as can be seen in Zhou et al. [2017]. But the literature on taming big time series did
not considered FTS methods directly, although there exists approaches involving other
fuzzy methods, see for instance Singh [2015].

The absence of computationally expensive iterative procedures inside the training
and forecasting procedures of the proposed FTS methods facilitates its scalability, as well
as the use of white box knowledge models that can be easily distributed and updated.
With this design, FTS modelsM can be quickly trained in commodity hardware, without
major processing requirements, and transferred between cluster nodes.

This chapter aims to propose scalable alternatives to perform training FTS meth-
ods using distributed algorithms and exploit these solutions to tackle the hyperparameter
optimization of big time series. In Section 5.2 an distributed FTS training approach for
big time series is proposed. In Section 5.3 the Distributed Evolutionary Hyperparameter
Optimization (DEHO) method is proposed, combining evolutionary algorithms and the
previously defined distributed training and forecasting approaches. In Section 5.4 compu-
tational experiments are performed to assess the speed up provided by the distributed
methods and the convergence of DEHO method for large environmental time series. Finally,
in Section 5.5 the results are discussed and synthesized.

5.1 Computational Clusters

According to Baker and Buyya [1999], “A cluster is a type of parallel or distributed
processing system, which consists of a collection of interconnected stand-alone computers
working together as a single, integrated computing resource”. Clusters are used for providing
high availability, load-balancing, distributed storage, high processing power, among other
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purposes.

The Distributed Storage Clusters (DSC) systems are employed to keep distributed
database systems or distributed file systems, exploiting local storage resources to allow
the storage of data volumes that can be handled by a single machine, while providing
transparent access to the whole dataset. Diversely, the High Processing Clusters (HPC)
systems are employed to solve complex or expensive computational tasks which can be
decomposed and parallelized by sub-datasets (Single Instruction / Multiple Data), sub-
tasks (Multiple Instruction / Single Data) or both (Multiple Instruction / Multiple Data).
A good example of HPC cluster is the classical Beowulf Cluster1 architecture, which
makes use of message passing middleware like MPI and PVM. In these frameworks the
instructions and data are spread across the cluster and, after the local processing on each
cluster node finishes, the results are gathered in some master or control node.

With the advent of Big Data, the demand of distributed file systems capable to
store large datasets was joined with the demand for simple programming interfaces for
processing distributed data. The Map/Reduce, proposed in Dean and Ghemawat [2008],
became a popular distribution paradigm due to its high adoption in Big Data literature.
In such paradigm the computational cluster contains a master node, which centralizes
the management of the tasks, and several slave nodes responsible for working tasks. The
distributed execution is divided into two main phases, the map (scattering) and reduce
(gathering). The Map phase splits the original dataset into smaller subsets and distributes
them to the slave nodes. Each individual slave node will perform the same predefined set
of computations on data and send the results back to the master node. The Reduce phase
collects the results from the slave nodes and performs final aggregations of results.

The popularity of the Map/Reduce paradigm to tackle Big Data problems imersed
after the first open source infrastructure frameworks became available, for instance Apache
Hadoop2. More recently some infrastructure was developed to allow in-memory processing,
turning the processing yet more efficient, as for instance the Spark framework3. In the
next sections, the distribution strategies for the sequential FTS methods are discussed
using HPC middleware and Map/Reduce paradigm.

5.2 Scalable Models With Distributed Execution

Depending on the data size and the capabilities of the available infrastructure,
different approaches must be considered for FTS method scalability, specially when dealing
with hyperparameter optimization.

1 The Beowulf Project - http://www.beowulf.org. Access in 15/05/2019
2 Apache Hadoop Project - https://hadoop.apache.org/. Access in 15/05/2019
3 Apache Spark - https://spark.apache.org/. Access in 15/05/2019

http://www.beowulf.org
https://hadoop.apache.org/
https://spark.apache.org/
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Small-sized time series (up to 10,000 instances) can be handled easily by a single
machine and the costs of distribution (network and middleware overhead) do not pay off.
This is the approach presented in all previous chapters.

For middle sized data (from 10,000 to 500,000 instances) the optimization process
is more likely task-intensive, the evaluation dataset Y can be split in smaller train/test
data windows that can be handled by a single machine, and just the accuracy results need
to be gathered and agregated. This is the approach presented in Section 5.2.1.

However, for highly sized data (above 500,000 instances), even the train/test data
windows are costly to be trained by a single machine. In this case the training and testing
methods need to be distributed themselves. This is the approach presented in Section
5.2.2.

5.2.1 Distributed Testing With Sequential Models

The distributed testing with sequential models aims to speed up iterative opti-
mization processes that require unnumbered evaluations of the objective function with
different small to medium datasets. Each evaluation requires a sample of the entire dataset
with which an FTS modelM will be trained and evaluated using an accuracy metric ε.

This is particularly the case of the hyperparameter optimization where, given a set
of hyperparameters Θ and a time series dataset Y , for each combination of hyperparameters
values θ ∈ Θ being evaluated, it must perform a rolling window cross validation on the
time series dataset. The distributed rolling window cross validation, shown in Figure 42,
splits the whole dataset Y in W smaller and overlapping data windows i = 1..W and each
data window is divided in train and test subsets. Then, for each data window i, a new
model Mi will be trained and evaluated, generating the local accuracy metric εi. The
average of the accuracy metric is calculated as ε = W−1

∑W
i=1 εi.

Parameter Name Description
0 < WL < |Y | Window Length the number of time series instances in

each data window
WI ∈ [0, 1] Window Increment Percentage ofWL which is used to move

the window
TS ∈ [0, 1] Train/Test split Percentage ofWL which is used as train-

ing set and the remaining as test set.

Table 29 – Distributed Testing Parameters

The distributed testing uses the parameters in Table 29. The number of data
windows W is given by W = max{w | w(WL ·WI) +WL ≤ |Y |} where |Y | is the length of
Y , and the process illustrated in Figure 42 is executed in each evaluation of optimization
engine. The key advantage of this approach is that it does not require any change on the
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Figure 42 – Distributed Testing With Sequential Models approach

FTS training and testing methods, just an adaption in the way the optimizer performs
the evaluations.

However, for big time series it is not enough. Depending on |Y | and the capabilities
of the available hardware, choosing of WL and WI may lead to three scenarios: a) WL will
be larger than the available memory of the cluster nodes; b) a value of W much greater
than the number of cluster nodes, implicating in several rounds of computation for each
node; c) WI too large that leads to the sub-sampling of the data (the windows are not
overlapped and let ranges without been tested). None of these scenarios is desirable and
thus a new approach must be considered.

5.2.2 Distributed Models

For big time series the choosing of WL and WI values that do not lead to sub-
sampling or cluster overhead, may fatally lead to a value of WL greater than the available
machine memory. In this case even the windows must be split in smaller ones and the
methodology of training and testing the models must change. Several stages of the training
processes defined in Sections 2.7.1 and 4.2 can be executed in parallel or distributed, on
a Single Instruction/Multiple Data (SIMD) approach, since the data splits preserve the
inherent time ordering. This characteristic allows the procedure’s distribution to enhance
their scalability and enable it to handle big time series.

This new approach changes the training method to first run the sequential pro-
cedure on individual cluster nodes with a slice of the original data window, creating a
sub-modelMi. Then the locally trained models are transmitted back to a master node
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where all local models are merged in a unique global modelM, as illustrated in Figure 43.
In the next sections the distributed training and forecasting methods are presented.

Master NodeMaster Node
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Window n

Sub Window 1
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𝓜1

Sub Window W Sub Window 1 Sub Window W

Worker W
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Time Series Data
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... ...
LEGEND

● Original Dataset
● Train Split inside data 

window
● Test Split inside data 

window
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● FTS model - 𝓜 
● Accuracy Metric - ε

Figure 43 – Distributed Models approach

5.2.2.1 Distributed training Procedure

The adaption of the sequential procedure defined in Section 2.7.1 to the distributed
one requires just few interventions. Stage 1 deeply depends on finding the universe of
discourse U . The general procedure splits the dataset over the working nodes where the
Ui universes of discourse are computed. In the final step a general linguistic variable Ã, is
computed by merging the locals Ui as U =

⋃
Ui where

⋃
is the merge step.

On the other hand, the design of FTS allows the complete execution of stages
2 and 3 of training process without changes, as shown in Figure 44. In this way, each
computational node will produce its own complete modelMi using its subset of the data,
and on the final step a unique modelM is generated by merging the local modelsMi as
M =

⋃
Mi, where

⋃
is the merge step. The complete distributed training procedure is

listed below and illustrated in Figure 44:

1. Partitioning:

a) Share: The hyperparameters k and µ are shared across the cluster;

b) Map: Distribute the Y dataset over the slave nodes and find Ui returning it
back to the master node;
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c) Reduce: Collect the Ui from the slave nodes, mixing it on a unique interval as
U =

⋃
Ui, where the

⋃
will select the smallest lower bound and the greatest

upper bound of each given interval;

d) Create: Once the universe of discourse U were defined, the creation of the
linguistic variable Ã is performed as the steps 2 and 3 of Stage 1 of the sequential
procedure.

2. Fuzzyfication & Rule Induction:

a) Share: The linguistic variable Ã and the α hyperparameters are shared across
the cluster;

b) Map: Distribute the Y dataset over the slave nodes and perform the fuzzyfi-
cation and rule induction for each subset, generating a local FTS modelMi

which is returned to the master;

c) Reduce: Collect allMi models;

d) Merge: Create an empty FTS modelM. For each rule LHS → RHS in all
collected modelsMi:

i. IfM does not contain the LHS, then append the entire rule onM;

ii. IfM contains the LHS, then for each wj · Aj ∈ RHS:
A. If the RHS onM does not contain Aj, then append wj · Aj on RHS

and add wj on #RHS

B. If the RHS on M contains Aj, then add wj on existing weight and
add wj on #RHS
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5.2.2.2 Distributed forecasting procedure

The computational cost of the forecasting procedure is low when compared with
the training procedure. The forecasting procedure bottlenecks are the fuzzyfication and
rule matching steps, and both of them can be optimized using spatial indexes, for instance
KD-trees [Muja and Lowe, 2014], which are more efficient when executed locally. Also,
as on every distributed procedure, the communication overhead makes this procedure
inefficient for data with low volume.

However, there are occasions where the model needs to be used for forecasting in
batch, where the input has high volume and one step ahead forecasting will be performed
for each data point. This scenario is common in model testing, simulation and hyper-
parameter optimization. In these cases it is profitable to share the parameters of the model
M across several slave nodes and perform the forecasting on data splits, keeping its time
ordering. The steps of the distributed forecasting procedure are listed below:

1. Share: The linguistic variable Ã and the rulesM are shared across the cluster;

2. Map: Distribute the Y dataset over the slave nodes, such that each split is labelled
with its time ordering;

3. Forecast Each slave node receives a data split Yp and executes the sequential
forecasting process, generating the estimates Ŷp, sending it back to the master node
with the same time label received with Yp;

4. Reduce: Collect the Ŷp estimates from the slave nodes;

5. Merge: Sort the Ŷp estimates by their time label and concatenate them on a unique
dataset Ŷ .

The proposed distributed methods speed up, or even make possible, to tackle
high processing tasks, for instance iterative optimization procedures, using big time series
and the previously proposed FTS methods. In next section an adaption of evolutionary
algorithm is proposed to FTS hyperparameter optimization.

5.3 Distributed Evolutionary Hyperparameter

Optimization

This section aims to propose the Distributed Evolutionary Hyperparameter Opti-
mization - DEHO for FTS methods. The DEHO approach combines the FTS distributed
training and forecasting methods with evolutionary optimization algorithms, specifically
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Genetic Algorithms, in order to optimize FTS models in terms of accuracy and parsimony
for big time series.

Given a set of hyperparameters Θ and an accuracy function f : Θ → R+, the
hyperparameter optimization task aims to discover the values of each hyperparameter
θ ∈ Θ such that θ̂ = arg minθ f(Θ). The hyperparameter optimization is a computational
expensive task and, on a Big Data context, its cost may be prohibitive. The general FTS
training procedure does not incorporate any kind of optimization, leaving to the user
the task of empirically searching for the best hyperparameters. In the meantime, these
parameters have great impact on final model performance and their optimization is highly
recommended. At this point, it is necessary to take advantage of the speed up provided by
the distributed method in Section 5.2 and to employ an efficient optimization method.

It is necessary to advise that the partitioning method Π was taken out of the
optimization, and was kept constant as the Grid Partitioning. The reason is that, besides
the Grid Partitioning, the other heuristic and metaheuristic Π methods can not be trained
with separated data and after merged without compromising its original features. This
special aspect must be the subject of future investigations in order to enhance the DEHO
method.

Two conflicting goals are sought during the hyperparameter optimization, the
accuracy and the parsimony (the structural complexity as usually measured by the number
of parameters of the model). In fuzzy time series models, to increase model’s accuracy it
is common to increase the number of fuzzy sets k and/or the order Ω of the model, which
automatically increases the number of fuzzy rules |M|. As the number of rules grows, the
computational complexity of the model also increases and the FTS approach becomes less
interesting when compared with other standard approaches, such as ARIMA or QAR. The
challenge is to find a balance between these two objectives, keeping the model small, fast
and accurate.

The FTS hyperparameter optimization problem is formulated below, where the
objective function f1 (5.1) controls the accuracy (represented by the weighted sum of the
mean error ε̄ (5.4) and the standard deviation of the error σε (5.5)) of the model and the
objective function f2 (5.2) controls for parsimony (represented by the weighted sum of the
model length |M| (5.6) and the sum of the lags |L| (5.7)). Some additional restrictions
are imposed on the order Ω (5.8), number of partitions k (5.9), α-cut (5.10), and the lags
indexes L (5.11).

Optimize:

minimize f1 = 0.6ε̄+ 0.4σε (5.1)

minimize f2 = 0.6|M|+ 0.4|L| (5.2)
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Where:

RMSE =

√√√√ n∑
t=0

(y(t)− ŷ(t))2) (5.3)

ε̄ = W−1

W∑
i=0

RMSE(i) (5.4)

σε = W−1

W∑
i=0

ε̄−RMSE(i) (5.5)

|M| =
rules∑
i=0

1 (5.6)

|L| =
Ω−1∑
i=0

L(i) (5.7)

Subject to:

Ω ≥ 1 (5.8)

k ≥ 3 (5.9)

α ∈ [0, 1) (5.10)

1 ≤ L(0) < ... < L(Ω) (5.11)

Genetic Algorithms (GA) are population-based metaheurisc approaches for solving
the optimization problems based on a genetic refinement metaphor. Vanilla GA algorithms
are intended for mono-objetive optimization, but with few adaptions it is possible to
handle multi-objetive problems as well. In this work the adaptions were made on selection
operator, which implements the Double Tournament strategy in order to comprise both
objectives on balancing the population.

The set of hyperparameters Θ is presented in Table 1, except the partitioning
method Π, such that Θ = {µ, k, α,Ω, L}. Each individual of the population is represented
by a vector - the genotype - with the values of each hyperparameter θ ∈ Θ. This vector
contains both real, categorical and array values, according to hyperparameter type. The
GA iterates over steps listed below until the stop criteria is achieved:

1. Initial Population: The initial population, with size NP , is generated randomly,
except for the hyperparameter L, whose size is constrained by Ω and the lag indexes
initially consider the most significant ACF/PACF lags.
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2. Evaluation: Each genotype is transformed into a trained model - the phenotype
- using the distributed method of Section 5.2 and then evaluated. The phenotype
evaluation uses the metrics according the objective function f1 and f2 and after the
evaluation procedure, the population is sorted by f1 and f2 in ascending order.

3. Selection: The selection operator is responsible to choose one part of the individuals
that will survive for the next generation. As the problem is multi-objective, a Double
Tournament strategy was implemented to balance the selection between the two
objectives. In the double tournament, the first round chooses randomly two pairs
of individuals in the population, and each pair will compete with each other based
on objective f1. On the second round the winner individuals of the first round will
compete with each other based on the objective f2. This process is repeated by a
rate SR of the population.

4. Elitism: As the selection operator is random, there is the possibility that the best
individual of the population be discarded. The elitist strategy will keep the best
individual of the current generation in the next generation and discard the worst.

5. Crossover: The crossover operator combines the genotypes of two individuals (i1 and
i2) in order to generate a descendent individual (iN). On crossover, two individuals
are randomly selected in the population and ordered as i1 and i2 according to their
f1 and f2 objectives. For all genes the mixing process will give a major contribution
for the best ranked individual (with .7 and .3 rates). For the real coded genes a linear
combination as iN = .7i1 + .3i2 will be performed. For the categorical genes, the
value of iN will be i1 with probability .7 or i2 otherwise. For the lag L the individual
lags will be also a linear combination of each lag. This process is repeated by a rate
CR of the population.

6. Mutation: The mutation operator aims to introduce novelties in the population,
then an individual is randomly chosen and random perturbations are applied to
its genes, taking care to keep the gene values feasible according to the problem
restrictions. This process is repeated by a rate MR of the population.

7. Stop Criteria: Repeat the steps 2 to 7 until one of these criteria are achieved:
NGstop generations without improvement or maximum number of generations NG.

This Genetic Algorithm requires the choice of the parameters presented in Table
30. The complete hyper-parameter optimization method also requires the choosing of the
distribution type and the parameters presented in Table 29.
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Parameter Description
PS ∈ N+ Population Size
NG ∈ N+ Max Number of Generations

0 < NGstop < NG Max Number of Generations without
improvement

SR ∈ [0, 1] Selection Rate
CR ∈ [0, 1] Crossover Rate
MR ∈ [0, 1] Mutation Rate

Table 30 – Genetic Algorithm parameters

5.4 Computational Experiments

This section presents an exploratory study of distributed models performance and
the DEHO method. The computational experiments employed a large sized environmental
time series, the SONDA dataset with 2,000,000 instances, and a medium sized time series,
the Malaysia dataset, with 17,000 instances. Both datasets are detailed in Appendix B,
where its main characteristics are presented.

In Section 5.4.1 the speed ups provided by the distributed training and forecasting
are presented by several cluster configurations. In 5.4.2 the distributed methods are
employed in DEHO method, and the convergence of the method is analyzed.

In order to contribute with the replication of all the results in the research,
all data and source codes employed in this chapter are available at the URL: http:
//bit.ly/scalable_probabilistic_fts_chap5

5.4.1 Speed Up Of Distributed Methods

In order to assess the impact of including more processing nodes on training and
forecasting processing times of distributed methods, different cluster configurations were
evaluated .

The performance of the sequential and distributed methods, on above cited clusters
configurations, was measured in terms of execution time (in seconds) and the speed up
from the sequential time, such that Sp = T1

Tp
, where Sp is the speed up for p nodes, T1 is

the time of the sequential execution and Tp is the time of the distributed execution with p
nodes.

The experiments show improvements on performance for each added node on the
large sized dataset, but this improvement is smaller in the medium sized dataset. The
trade-off between the distribution overhead and the benefit of the distributed computations
stops to be profitable above the third node on the cluster for medium sized datasets. Above
3 nodes the network overhead for the length of data makes the distributed algorithm not
interesting. However, it can be seen that an average speed up of 2x was achieved on the

http://bit.ly/scalable_probabilistic_fts_chap5
http://bit.ly/scalable_probabilistic_fts_chap5
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training procedure for large time series, showing that the performance tends to increase
on more robust computational clusters.

Dataset CPU’s Training
Time

Training
Speed Up

Forecasting
Time

Forecasting
Speed Up

SONDA Wind Speed

1 685.25 ± 135.16 - 285.89 ± 57.94 -
2 383.29 ± 72.50 1.78 164.82 ± 30.10 1.73
3 330.13 ± 64.55 2.07 138.58 ± 25.37 2.06
4 342.64 ± 52.86 1.99 151.34 ± 25.54 1.88
5 300.75 ± 58.19 2.27 130.67 ± 23.20 2.18
6 348.98 ± 67.41 1.96 153.16 ± 30.0 1.86
7 361.45 ± 65.61 1.89 160.74 ± 30.68 1.77

SONDA Solar Radiation

1 651.29 ± 121.95 - 274.28 ± 47.72 -
2 383.24 ± 66.37 1.69 165.98 ± 36.21 1.65
3 314.10 ± 59.98 2.07 136.92 ± 24.63 2.00
4 345.55 ± 64.135 1.88 152.31 ± 28.43 1.8
5 289.38 ± 54.44 2.25 129.52 ± 24.22 2.11
6 340.35 ± 59.64 1.91 153.09 ± 28.35 1.79
7 349.70 ± 65.48 1.86 159.16 ± 28.46 1.72

Malaysia Temperature

1 12.28 ± 0.70 - 5.11 ± 0.35 -
2 7.21 ± 0.48 1.7 3.42 ± 0.23 1.49
3 6.64 ± 0.45 1.84 3.24 ± 0.24 1.57
4 7.44 ± 0.18 1.64 3.95 ± 0.23 1.29
5 6.56 ± 0.29 1.87 3.93 ± 0.47 1.30
6 7.46 ± 0.24 1.64 4.44 ± 0.23 1.15
7 8.09 ± 0.27 1.51 5.15 ± 0.01 0.99

Malaysia Load

1 13.05 ± 1.50 - 5.32 ± 0.59 -
2 7.84 ± 0.9 1.66 3.43 ± 0.24 1.54
3 7.14 ± 0.75 1.82 3.42 ± 0.21 1.55
4 8.06 ± 1.01 1.61 4.31 ± 0.39 1.23
5 8.18 ± 2.31 1.59 4.10 ± 0.41 1.29
6 8.06 ± 1.01 1.61 4.77 ± 0.46 1.11
7 8.90 ± 0.86 1.46 6.18 ± 0.71 0.86

Table 31 – Speed up provided by the distributed model by number of CPU’s

5.4.2 Convergence of DEHO approach

The DEHO method was employed using a computational cluster with 7 CPU’s
and the parameters contained in Table 32 using PWFTS as FTS method. The experiment
performed 5 executions of DEHO for each dataset and the averaged results are presented
in Table 33. A sample of the convergence process of DEHO can be seen in Figure 46, for
SONDA Wind Speed dataset.

The results showed that, for the studied time series, the convergence was fast,
expending about 16 generations on average. In the trade off between the objectives f1 and
f2, the accuracy objective showed to be predominant over the parsimony objective during
the convergence of the method.

The optimized values for the hyperparameters generated parsimonic and accurated
forecasting models, whose samples of their performance can be seen in Figure
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Figure 45 – Speed up provided by the distributed model by number of CPU’s

Parameter Dataset Value

WL

SONDA
Wind Speed 600,000

SONDA
Solar Radiation 600,000

Malaysia
Temperature 10,000

Malaysia
Eletric Load 10,000

WI All .5
TS All .9
PS All 20
NG All 30

NGstop All 10
SR All .5
CR All .5
MR All .2

Table 32 – Distributed Evolutive Hyperparameter Optimization parameter values
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Dataset Generations k µ α Ω L Metric Value

SONDA Solar Radiation 16.4
± 7.8

50.8
± 0.7 2 0.24

± 0.13 2 [1,2]
|M| 613 ± 222

RMSE 93.13 ± 0.62
Time 3221 ± 1505

SONDA Wind Speed 30.0 50 1 0.13
± 0.1 1 [1]

|M| 24 ± 1.45
RMSE 0.34 ± 74e-10−4

Time 3058 ± 891

Malaysia Energy Load 12.5
± 2.5

50.6
± 1.2 2 0.22

± 0.23 2 [1,2]
|M| 306.9 ± 137.9

RMSE 2745.5 ± 271.27
Time 3945.09 ± 800.71

Malaysia Temperature 16.6
± 10.15

52.8
± 3.18 1 0.24

± 0.09 1 [1]
|M| 73.21 ± 1.08

RMSE 1.08 ± 0.06
Time 3916.58 ± 2042.12

Table 33 – Optimization mean results by dataset

Figure 46 – Sample of DEHO convergence

5.5 Conclusion

Training accurate models for forecasting big time series is a challenging task for
traditional and soft-computing methods. Usually the methods are not designed to deal
with such high volume of data. When such data volume cannot be grounded on a single
machine memory, it demands a distributed architecture of storage and processing. This
is particularly problematic when optimizing the hyperparameters of a method, because
successive model training and testing processes are required.

This chapter proposed two distributed approaches for FTS model scalability, one
for middle sized data and another for big sized data. The first one distributes the data
across the nodes of a cluster, where individual models are trained and tested. The second
one, the distributed model itself, splits the training of a unique model across several nodes,
allowing a big time series model to be trained in pieces and then aggregated into a single
model.

These approaches were employed on Distributed Evolutionary Hyperparameter
Optimization (DEHO). DEHO method is an adapted genetic algorithm that minimizes two
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cost functions, the accuracy function f1 and the parsimony function f2. An exploratory
study was performed in order to measure the feasibility of the proposed distributed models
and showed the speed-up provided for big time series. The convergence of DEHO method
also was analyzed, showing its effectiveness.

5.5.1 Method limitations

The distributed training method is indicated only for big time series. Using the
method for small data might slow down the training time due to the network and model
merging overheads. DEHO method took into account only time invariant, rule based,
monovariate and high-order methods, not being applicable for time variant, multivariate
and first order FTS methods.

Next chapter presents a short review of multivariate methods and proposes a
simple approach for extending PWFTS to forecasting multivariate time series.
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Multivariate Models

Despite the existing approaches in the literature, dealing with multivariate and
spatio-temporal time series was always a challenging task for FTS methods, specially
because of the complexity growth of the rules as the dimension increases. An important
gap in the literature is the absence of multiple input and multiple output (MIMO) methods
- the majority of FTS literature consists of basically univariate forecasting methods.

A simple approach is to transform multivariate time series into monovariate time
series by using Fuzzy Information Granules (FIG). Each FIG acts as a multivariate fuzzy
set, or a composition of individual fuzzy sets from different variables, allowing to replace a
vector (the values of one data point) by a scalar (the identification of the FIG with the
highest membership of that data point).

This approach is employed on Fuzzy Information Granular Fuzzy Time Series
(FIG-FTS), a wrapper method that enables PWFTS to tackle multivariate time series.
It begins by partitioning the Universe of Discourse of each individual variable. Then the
crisp values of each variable are fuzzyfied and the corresponding fuzzy sets are combined
to create one Fuzzy Information Granule, such that it can be used as a reference of all
data points in that same region. This incremental approach creates the FIGs on demand,
according to the training data, and its sensibility can be controlled using the method’s
hyperparameters.

This chapter presents a short review of multivariate FTS methods and Fuzzy
Information Granules in Section 6.1. Section 6.2 presents a conventional method for
multivariate FTS (MVFTS), which does not employ FIGs. In Section 6.3 the Fuzzy
Information Granule Fuzzy Time Series (FIG-FTS) is proposed to enable PWFTS method
be used for multivariate data and allowing the use of its interval and probabilistic forecasting
features. In Section 6.4 an exploratory study of the performance of FIG-FTS when
compared with previous FTS methods is presented and finally, in Section 6.5, the results
are discussed and the conclusions given.
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6.1 Multivariate FTS Methods

Multivariate time series are sets of sequential vectors of the form Y ∈ Rn where
n = |V| and V is the set of attributes of Y . Each vector y(t) ∈ Y contains all attributes
Vi ∈ V and there is a temporal dependence between these data points such that their
temporal ordering – given by the time index t ∈ T – must be respected.

In the FTS literature it is common to employ clusterization methods to reduce
multivariate data in monovariate ones, as can be seen in Li et al. [2008], Chen and Chang
[2010], Sun et al. [2015] which employ Fuzzy C-Means (FCM) clustering algorithm to
create multivariate FLRG’s.

Chen and Chen [2011] introduced the concept of Fuzzy Variation Groups - FVG for
bivariate FTS, where each FVG groups the FLRG’s of each variable by their co-occurrence.
Askari and Montazerin [2015] proposes the High-Order Multi-Variable FTS - HMV-FTS
algorithm based on FCM clustering to generate the multi-variable FLRG’s. Jilani et al.
[2008] proposed the Multivariate Stochastic FTS - MSFTS based on the exponential
smoothing between the diverse variables.

6.1.1 Fuzzy Information Granules

The concept of Fuzzy Information Granules (FIG) was first proposed in Zadeh
[1996] as a way to define entities that represent subsets (or granules) of a wider domain.
There are some works in the FTS literature where this concept is mixed with the partition
of the Universe of Discourse, as discussed in Lu et al. [2014], Chen and Chen [2015a], but
there are several ways to define FIG in the literature.

For univariate time series it is common to define a FIG as representative set of sub-
samples of the data, so each FIG is a common temporal pattern as in Yang et al. [2017b].
The construction of this kind of FIG usually employs the clustering of sub-sequences, as
in Magalhães et al. [2008]. In Wang et al. [2014, 2015] we can find a univariate fuzzy time
series approach whose FIGs are a combination of unequal partitioning of the UoD and
prototype sub-sequences.

For multivariate time series FIGs are usually represented as hyper-boxes or
multidimensional clusters in the feature space, as in Reyes-Galaviz [2016], Singh and
Dhiman [2018]. In Singh and Dhiman [2018], a multivariate fuzzy time series method is
presented, which uses a bio-inspired optimization method to create FIGs by iteratively
adjusting the interval lengths of each variable.

Other non-FTS granular approaches can also be found in the literature, as the
Granular Functional Forecasting (GFM), proposed in Magalhães et al. [2008], a univariate
forecasting method based on Takagi-Sugeno fuzzy system where FIGs are created using
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Alias Parameter Type Description

ki
Number of
partitions N+ The number of fuzzy sets that will be created

in the linguistic variable Ṽi
µ

Membership
function µ : U → [0, 1]

A function that measure the membership of
a value y ∈ U to a fuzzy set

α α-cut [0, 1]
The minimal membership grade to take ac-
count on fuzzyfication process

Table 34 – WMVFTS hyperparameters for each variable Vi ∈ V

clustering methods. In Leite et al. [2011], the authors propose the fuzzy set based granular
evolving modeling (FBeM) approach for time series prediction, later extended in Soares
et al. [2018] for spatio-temporal data.

There are some notable drawbacks in the previous methods, namely: a) the absence
of multivariate forecast (MIMO); b) the use of optimization methods to create the FIGs,
which makes the learning process computationally expensive; c) the absence of multivariate
FTS methods that could provide both weighted and high order characteristics. To fix
these drawbacks this work proposes the FIG-FTS method, a weighted and high-order
FTS method that will be discussed in the next sections.

6.2 The Conventional Multivariate Fuzzy Time Series

method

Just as it was done in Chapter 2, this section proposes a consensus model for
rule based multivariate FTS that extends the model of Chen [1996] to the multivariate
case. The Conventional Multivariate Fuzzy Time Series (MVFTS) method was designed
to allow several models to be trained individually with subsets of a greater dataset and
later to be merged into a single model, feature that enhances the performance of model
creation by enabling its distribution.

For each chosen variable Vi ∈ V on Y , MVFTS also incorporates several features
present in the literature, represented by the hyperparameters in Table 34, giving versatility
and flexibility to the model. The method is composed of two procedures: the training
procedure and the forecasting procedure.

The MVFTS is a first order point forecaster of type Multiple Input/Single Output
(MISO), then for the set of variables V one of them is chosen as the target (or endogenous)
variable and the others are referred as the explanatory (or exogenous) variables. From now
on, the target variable will be distinguished from the others by an asterisk, as ∗V .

The training procedure, explained in subsection 6.2.1 and illustrated in Figure 47,
is a three stage process responsible to create a multivariate weighted FTS modelM. The
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Figure 47 – MVFTS training procedure

final MVFTS model M consists of a set of variables V, a fuzzy linguistic variable Ṽi
for each Vi ∈ V and a set of weighted fuzzy rules over the linguistic variables Ṽi. The
inputs of the training procedure are the crisp time series training data Y and the set of
hyperparameters for each Vi ∈ V .

The forecasting procedure, explained in subsection 6.2.2 and illustrated in Fig-
ure 48, aims to produce a point estimate ŷ(t+ 1) for the target variable ∗V , given an input
sample Y , using the linguistic variables Ṽi and the induced fuzzy rules on modelM.

6.2.1 Training Procedure

Stage 1 Partitioning :

a) Defining UVi : The Universe of Discourse UVi defines the sample space, i.e., the
known bounds of the variable Vi, such that UVi = [min(Y Vi)−D1,max(Y Vi) +

D2], whereD1 = min(Y Vi)×0.2 andD2 = max(Y Vi)×0.2 are used to extrapolate
the known bounds as a security margin, ∀Vi ∈ V .

b) UVi Partitioning : Split UVi in ki intervals Uj with midpoints cj, for j = 0..ki,
where all the intervals have the same length;

c) Define the linguistic variable Ṽi: For each interval Uj ∈ UVi create an overlapping
fuzzy set AVij , with the membership function µ

A
Vi
j
. The midpoint of the fuzzy

set AVij will be cj, the lower bound lj = cj−1 and the upper bound uj = cj+1
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∀ j > 0 and j < ki, and l0 = minUVi , lk = maxUVi . Each fuzzy set AVij is a
linguistic term of the linguistic variable Ṽi;

Stage 2 Fuzzyfication:

Transform the original numeric time series Y into a fuzzy time series F , where each
data point f(t) ∈ F is an n × k array with the fuzzyfied values of y(t) ∈ Y with
respect to the linguistic terms AVij ∈ Ṽi, where the fuzzy membership is greater than
the predefined α-cut, i.e., f(t) = {AVij | µAVij

(y(t)Vi) ≥ αi ∀AVij ∈ Ṽi};

Stage 3 Rule Induction:

a) Generate the temporal patterns: The fuzzy temporal patterns associate the
fuzzyfied values V to a set of possible values of the target variable ∗V, such
that V → ∗V, whith the format AV0j , ..., A

Vn
j → A∗Vj , where the precedent, or

left hand side (LHS), is f(t− 1) = AVij ,∀Vi ∈ V, and the consequent, or right
hand side (RHS), is f(t+ 1) = A∗Vj , A∗Vj ∈ ∗̃V .

b) Generate the rule base: Select all temporal patterns with the same precedent
and group their consequent sets creating a rule with the format V → wk ·
A∗Vk , wj · A∗Vj , ..., where the LHS is f(t − 1) = AVij ,∀Vi ∈ V and the RHS is
f(t+ 1) ∈ {A∗Vk , A∗Vj , ...}. Each rule can be understood as the weighted set of
possibilities which may happen on time t+ 1 (the consequent) when a certain
precedent Ai0, ..., AiΩ is identified on previous lag (the precedent).

6.2.2 Forecasting Procedure

Step 1 Fuzzyfication: Compute the membership grade µji for y(t − 1) ∈ Y such that
µji = µ

A
Vi
j

(y(t− 1)), for each AVij ∈ Ṽi, for each Vi ∈ V ;

Step 2 Rule matching : Select the K rules where all fuzzy sets AVij on the LHS, for each
Vi ∈ V, have µji > αi; The rule fuzzy membership grade is shown below, using the
minimum function as T-norm.

µq =
⋂

j∈Ṽi ; i∈V

µji (6.1)

Step 3 Rule mean points: For each selected rule q, compute the mean point mpq of the
target variable ∗V as below, where cj is the c parameter of the µ function from fuzzy
set A∗Vj :

mpq =
∑
j∈∗Ṽi

cj (6.2)
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Figure 48 – MVFTS forecasting procedure

Step 4 Defuzzyfication: Compute the forecast as the weighted sum of the rule mid-points
mpq by their membership grades µq for each selected rule j:

ŷ(t+ 1) =

∑
q∈K µq ·mpq∑

q∈K µq
(6.3)

6.2.3 Interval forecasting for MVFTS

The MVFTS model can be used for interval forecasting following the same approach
of [I]FTS method. For this it is needed to change the Steps 3 and 4 of the forecasting
procedure presented in Section 6.2.2, as presented below:

Step 3 Rule intervals : For each selected rule q, compute the interval Iq of the target variable
∗V as below, where A∗Vj and A∗Vj are respectively the lower and upper bounds of the
target fuzzy sets A∗Vj :

Iq = [Iqmin, I
q
max] (6.4)

Iqmin = min(A∗Vj ∈ ∗Ṽi) (6.5)

Iqmax = max(A∗Vj ∈ ∗Ṽi) (6.6)

(6.7)

Step 4 Defuzzyfication: Compute the prediction interval as the extrema of the rule intervals
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Iq by their membership grades µq for each selected rule j:

I(t+ 1) =

∑
j∈∗Ṽi µqI

q∑
q∈V µq

=

∑
q∈V [µqIqmin, µqI

q
max]∑

q∈V µq
(6.8)

6.2.4 Weighted Multivariate FTS - WMVFTS

A simple extension of MVFTS to embody weights in its rules can be achieved by
changing Stage 3.b of the training procedure presented in Section 6.2.1, where the new
step is:

Stage 3.b) Generate the rule base: Select all temporal patterns with the same precedent and
group their consequent sets creating a rule with the format V → wk ·A∗Vk , wj ·A∗Vj , ...,
where the LHS is f(t− 1) = AVij ,∀Vi ∈ V and the RHS is f(t+ 1) ∈ {A∗Vk , A∗Vj , ...}
and the weights wj, wk, ... are the normalized frequencies of each temporal pattern
such that:

wi =
#A∗Vj

#RHS
∀A∗Vj ∈ RHS (6.9)

where #Ai is the number of occurrences of Ai on temporal patterns with the same
precedent LHS and #RHS is the total number of temporal patterns with the same
precedent LHS.

It is also need to change the Step 3 of the forecasting procedure presented in
Section 6.2.2, as presented below:

Step 3 Rule mean points: For each selected rule q, compute the mean point mpq of the
target variable ∗V as below, where cj is the c parameter of the µ function from fuzzy
set A∗Vj :

mpq =
∑
j∈∗Ṽi

wj · cj (6.10)

For the interval forecasting method proposed in Section 6.2.3, a new approach is
adopted to create the fuzzy rule intervals, as presented below:

Iq = [Iqmin, I
q
max] (6.11)

Iqmin =
∑
j∈∗Ṽi

wj · A∗Vj (6.12)

Iqmax =
∑
j∈∗Ṽi

wj · A∗Vj (6.13)

MVFTS and WMVFTS methods take separated partitionings for each variable and
its rules contains references for the different variables. In next section a simple approach is
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proposed for transforming multivariate time series in monovariate ones, allowing the use
of monovariate FTS methods to tackle multivariate time series.

6.3 Fuzzy Information Granule Fuzzy Time Series

FIG-FTS

The Fuzzy Information Granule Fuzzy Time Series (FIG-FTS) is a wrapper
model which enables a monovariate model (PWFTS) to tackle multivariate time series. In
addiction to extending PWFTS features for multivariate data, the FIG-FTS also appends
the multivariate forecasting capability, acting as a Multiple Input/Multiple Output (MIMO)
method, where all variables are both targets and explanatory variables.

The aim of FIG-FTS is to replace the Partitioning and Fuzzyfication stages
of the PWFTS training procedure detailed in Section 4.2, the Fuzzyfication step of the
forecasting procedure detailed in Section 4.3 and appends the multivariate forecasting to
the extensions presented in Section 4.4.

Given an n-variate time series Y = (y1(t), . . . , yn(t)), t = 0 . . . , T , corresponding
variables Vi are defined for each yi(t). The resulting fuzzy time series F is then composed
by data points f(t) ∈ F that represent a sequence of fuzzy information granules Gi. Each
granule contains a set of fuzzy linguistic variables Ṽi related to each variable Vi.

The training procedure, described in Section 6.3.1 and illustrated in Figure 49,
performs the multivariate partitioning, fuzzyfication and then feeds PWFTS with the
fuzzyfied data, whose is responsible for rule induction. The final FIG-FTS model M
consists of a set of variables V, a fuzzy linguistic variable Ṽi for each Vi ∈ V, a fuzzy
information granule set FIG and a set of probabilistic weighted high order fuzzy rules
over the information granules Gi ∈ G. The training procedure employ the hyperparameters
listed in Table 35

In the training method the partitioning of each variable is independent from the
others. Each variable has its own linguistic variable Ṽi. For this it is necessary to inform,
for each chosen variable Vi ∈ V on Y , the hyperparameters ki, µ and α. The order of the
model is controlled by the parameter Ω and the lag indexes are controlled by the parameter
L.

The global linguistic variable FIG is the union of all Fuzzy Information Granules
Gi, which in turn are the combination of one fuzzy set for each variable, such that
Gi = {AVij },∀Vi ∈ V and its membership function is given by µGi =

⋂
µ
A
Vi
j
, where

⋂
is

the minimum T-norm. The FIG set is indexed by the midpoints of its internal fuzzy sets,
enabling optimized spatial search using KD-trees. With the linguistic variable FIG the
fuzzyfication process transforms each multivariate data point y(t) ∈ Y into a Gi ∈ FIG,
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Alias Parameter Type Description

ki
Number of
partitions N+ The number of fuzzy sets that will be created

in the linguistic variable Ṽi
µ

Membership
function µ : U → [0, 1]

A function that measure the membership of
a value y ∈ U to a fuzzy set

α α-cut [0, 1]
The minimal membership grade to take ac-
count on fuzzyfication process

Ω Order N+ The number of past lags used in the precedent
of each fuzzy rule

L Lags A vector of the past lag indexes, with length
Ω and 1 ≤ L[i] < L[i+ 1] for t = 0..Ω

κ
k-nearest
neighbors N+

The number of nearest neighbors that the
spatial index search on FIG during the fuzzy-
fication process

Table 35 – FIG-FTS hyperparameters

such that f(t) = Gi.

The forecasting procedure, explained in subsection 6.3.2 and illustrated in Figure
50, aims to produce a point estimate ŷ(t+ 1) for each variable V , given an input sample
Y , using the linguistic variable FIG and the induced fuzzy rules on modelM.

The rule matching procedure can become computationally expensive as the size of
the rule baseM grows. Because of this it is advisable that implementations of this model
use spatial trees [Muja and Lowe, 2014] to index the rules with the midpoints of each
fuzzy set on their LHS, optimizing the search for applicable rules during the forecasting
step. This work used the KD-tree implementation of the Scipy Spatial package1.

The global parameter κ is related with the spatial index search on FIG, and
indicates how many Gi ∈ FIG are returned for a given crisp multivariate data point. This
parameter has influence on the sensibility and the diversity of the rules considered during
the forecasting procedure, such that as κ increases more rules will be accounted on. If
κ = 1, just the closest rule (the rule with the highest membership degree) will be used.

6.3.1 Training Procedure

Stage 1 Partitioning :

a) Defining UVi : The Universe of Discourse UVi defines the sample space, i.e., the
known bounds of the variable Vi, such that UVi = [min(Y Vi)−D1,max(Y Vi) +

D2], whereD1 = min(Y Vi)×0.2 andD2 = max(Y Vi)×0.2 are used to extrapolate
the known bounds as a security margin, ∀Vi ∈ V .

1 https://docs.scipy.org/doc/scipy/reference/spatial.html. Access in 2019-04-29.

https://docs.scipy.org/doc/scipy/reference/spatial.html
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Figure 49 – FIG-FTS training procedure

b) UVi Partitioning : Split UVi in ki intervals Uj with midpoints cj, for j = 0..ki,
where all the intervals have the same length;

c) Define the linguistic variable Ṽi: For each interval Uj ∈ UVi create an overlapping
fuzzy set AVij , with the membership function µ

A
Vi
j

(yVi(t)), where yVi(t) is the

value of the Vi variable on instance y(t) ∈ Y . The midpoint of the fuzzy set AVij
will be cj, the lower bound lj = cj−1 and the upper bound uj = cj+1 ∀ j > 0

and j < ki, and l0 = minUVi , lk = maxUVi . Each fuzzy set AVij is a linguistic
term of the linguistic variable Ṽi;

Stage 2 Fuzzyfication:

Transform the original numeric time series Y into a fuzzy time series F , where each
data point f(t) ∈ F is a Gi ∈ FIG. For each y(t) ∈ Y the following steps must be
executed:

a) Individual variable fuzzyfication: For each variable Vi ∈ V, find the linguistic
terms AVij ∈ Ṽi, where the fuzzy membership is greater than the predefined
α-cut, i.e., fVi(t) = {AVij | µAVij

(yVi(t)) ≥ αi ∀AVij ∈ Ṽi};

b) Search in FIG: For each combination of fuzzy sets AVij in fVi(t) verify if there
is a Gi ∈ G where Gi ⊃ {AVij },∀A

Vi
j ∈ fVi(t). If it exists, then the fuzzyfied value



6.3. Fuzzy Information Granule Fuzzy Time Series FIG-FTS 139

y(t) FUZZYFICATION f(t)

DE
FUZZYFICATION

LEGEND

■ PROCEDURES

■ DATA

■ PARAMETERS

■ HYPERPARAMETERS

f(t+1)

ŷ(t+1)

FUZZY INFORMATION 
GRANULES - 𝓕𝓘𝓖

PWFTS

FUZZY
RULES - 𝓜

Figure 50 – FIG-FTS forecasting procedure

of y(t) is Gi. This search is performed with KD-trees, comparing the midpoints
of the fuzzyfied data and the midpoints of the fuzzy sets in the FIG.

c) Create new Gi in FIG: If no Gi was found in the previous step, new ones are
added to FIG. For each combination of fuzzy sets AVij in fVi(t) create a fuzzy
information granule Gi such that Gi = {AVij },∀A

Vi
j ∈ fVi(t) and µGi =

⋂
µ
A
Vi
j
.

The created Gi is then the fuzzyfied value of y(t).

Stage 3 Rule Induction:

a) The fuzzyfied data F where f(t) = [(G0, µG0), . . . , (Gi, µGi)] is passed to the
Rule Induction stage of PWFTS method, which create the PWFTPG model
M. Each high-order PWFTG rule now will have the format πjGi0, ...,GiΩ →
wj0 · Gi0, . . . wji · Gji, where the LHS is f(t−L(Ω)) = Gi0, f(t−L(Ω− 1)) = Gi1,
..., f(t − L(0)) = GiΩ and the RHS is f(t + 1) ∈ {Gk,Gj, ...} and the weights
πj, wjk are the fuzzy empirical probabilities.

6.3.2 Forecasting Procedure

Step 1 Fuzzyfication: Find the κ closest GiΩ, ...,Gi0 ∈ FIG to the input sample y(t −
Ω), ..., y(t).

Step 2 Rule matching : The fuzzyfied input sample is transfered to PWFTS that search for
the applicable rules. For each PWFTPG rule j found, its fuzzy membership is given
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by:
µj =

⋂
t∈L i∈FIG

µGit (6.14)

Step 3 Defuzzyfication:

a) Target variable selection: For non multivariate forecasts a target variable ∗V
must be chosen between the variables V .

b) PWFTPG adaption: After the target variable ∗V be selected, the RHS of
all PWFTPG’s are modified, replacing the figi by the fuzzy sets A∗Vj ∈ ∗Ṽi,
keeping the weights untouched;

c) Deffuzyfication: The PWFTS deffuzyfication methods (point, interval and
probabilistic) can be invoked without modifications;

Step 4 Multivariate forecasting :

a) If a target variable was not specified, compute a point forecast ŷVi(t + 1)

invoking the PWFTS point forecasting by taking each variable Vi ∈ V as a
target variable;

b) Merge the individual variable forecastings to create the multivariate forecast
ŷ(t+ 1) =

⋃
Vi∈V ŷ

Vi(t+ 1)

Step 5 Forecasting horizon: Given the number m of steps ahead to forecast (the forecast
horizon), repeat the Steps 1 to 4 m times, appending the output ŷ of the previous
Step 4 at the end of the y(t) input for the next Step 1.

6.3.3 Method discussion

The main insight of the FIG-FTS is that the linguistic variables Ṽi work as
feature extraction layers and each fuzzy information granule G is a small cluster prototype
of these features, simplifying the representation of temporal patterns and aiding pattern
identification and rule induction. Each G also helps the multivariate defuzzyfication process,
working as a final output layer for the model.

The learning procedure of FIG-FTS is controlled by its hyperparameters that
directly affect its accuracy and parsimony. The number of partitions of each variable ki
affects the number of rules directly, given the maximum number of rules (in the worst
case) is a Cartesian product of the fuzzy sets AVij ∈ Ṽi, for each Vi ∈ V. The αi-cut, on
the other hand, controls the fuzzyfication sensibility by eliminating, in the rule induction
stage, values with lower membership grades. It reduces the number of rules by preventing
the capture of spurious patterns, generated by insignificant memberships or noise. The
αi-cut also enhances the forecasting process by eliminating lower related rules on rule
search.
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The parameter κ has influence on the forecasting accuracy. There is also a balance
between the use of too few or too many rules on forecasting procedure, such that too few
rules may not have enough patterns to describe the correct time series behavior and too
many may bring patterns that are not closely related with the current behavior.

In the next section the empirical results of the proposed method are presented,
showing its effectiveness for complex artificial and natural dynamic processes.

6.4 Computational Experiments

This section presents an exploratory study of multivariate FTS methods and
FIG-FTS. The computational experiments employed two multivariate time series, the
SONDA dataset with 2,000,000 instances and the Malaysia dataset, with 17,000 instances.
Both datasets are detailed in Appendix B, where its main characteristics are presented.

The multivariate models were testes for point, interval and probabilistic forecasting
(in the case of FIG-FTS) using the presented FTS methods as competitor models. For
each dataset, with exception to timestamp variables, each variable Vi ∈ V was used as
target variable ∗V once, allowing the comparation with the monovariate FTS methods.

In order to optimize the forecasting accuracy an specific configuration of variables
was researched for each ∗V ∈ V , and it is shared among MVFTS, WMVFTS and FIG-FTS.
The specific values of ki, µi and αi for each variable Vi ∈ V were obtained using DEHO
method on the isolated variables.

In subsections 6.4.1 and 6.4.2 the details about the variables of the multivariate
methods are presented. In subsection 6.4.3 the results of the experiments are presented for
point, interval and probabilistic forecasting, and samples of methods performances are
provided.

In order to contribute with the replication of all the results in the research,
all data and source codes employed in this chapter are available at the URL: http:
//bit.ly/scalable_probabilistic_fts_chap6

6.4.1 SONDA models settings

The SONDA dataset is composed by 3 variables DateTime (timestap of each
instance), glo_avg (solar radiation) and ws_10m (wind speed). The details of this dataset
and its variables are presented in Appendix B.

The Solar Radiation variable, is independent to Wind Speed variable and then
this last can be discard. The Solar Radiation has two main seasonal components: yearly
and hourly. These two seasonalities can be extracted from the DateTime variable. A model

http://bit.ly/scalable_probabilistic_fts_chap6
http://bit.ly/scalable_probabilistic_fts_chap6
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to forecast the Solar Radiation variable based on SONDA multivariate dataset contains
the set up presented in Table 36 and illustrated in Figure 51.

Vi Data Source ki µi αi

Hour DateTime 24 Triangular .3
Month DateTime 12 Triangular .3
Solar glo_avg 5 Gaussian .25

Table 36 – Variables and partitioning for SONDA Solar Radiation

The Wind Speed variable is independent to Solar Radiation variable and then
this last can be discard. The Wind Speed has a yearly seasonal components that can be
extracted from the DateTime variable. A model to forecast the Wind Speed variable based
on SONDA multivariate dataset contains the set up presented in Table 37 and illustrated
in Figure 52.

Figure 51 – Variables and partitioning for SONDA Solar Radiation

Vi Data Source ki µi αi

Month DateTime 12 Triangular .3
Wind ws_10m 15 Gaussian .25

Table 37 – Variables and partitioning for SONDA Solar Radiation

6.4.2 Malaysia models settings

The Malaysia dataset is composed by 3 variables DateTime (timestap of each
instance), temperature and load (electric load). The details of this dataset are presented
in Appendix B.

The Load variable is a hourly seasonal variable (e. g. dependent of DateTime
variable) and also known to be dependent of the temperature variable. A model to forecast
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Figure 52 – Variables and partitioning for SONDA Wind Speed

Vi Data Source ki µi αi

Hour DateTime 24 Triangular .3
Temperature temperature 10 Gaussian .3

Load load 10 Gaussian .25

Table 38 – Variables and partitioning for SONDA Solar Radiation

Figure 53 – Variables and partitioning for Malaysia Eletric Load

the Load variable based on Malaysia multivariate dataset contains the set up presented in
Table 38 and illustrated in Figure 53.

The Temperature variable, in other hand, is independent in relation of Load
variable and then it can be discarded. The temperature has two main seasonal components:
yearly and hourly. These two seasonalities can be extracted from the DateTime variable.
A model to forecast the Temperature variable based on Malaysia multivariate dataset
contains the set up presented in Table 39 and illustrated in Figure 54.
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Vi Data Source ki µi αi

Hour DateTime 24 Triangular .3
Month DateTime 12 Triangular .3

Temperature temperature 10 Gaussian .3

Table 39 – Variables and partitioning for Malaysia Temperature

Figure 54 – Variables and partitioning for Malaysia Temperature

6.4.3 Results

The RMSE accuracy for one step ahead point forecasting is presented in Figure 55,
by method and dataset. Samples of the multivariate methods point forecasting performance
are also illustrated in Figure 56 for one step ahead forecasting and in Figure 57 for many
steps ahead forecasting.

The interval forecasting accuracy using the Winkler Score metric, for one step
ahead is presented in Figure 58, by method and dataset. Samples of the multivariate
methods interval forecasting performance are also illustrated in Figure 56 for one step
ahead forecasting and in Figure 57 for many steps ahead forecasting.

The probabilistic forecasting accuracy using the CRPS metric, for one step ahead,
is presented in Figure 59, by method and dataset. Samples of FIG-FTS probabilistic
forecasting performance are also illustrated in Figures 60 and 61 for one step ahead
forecasting and in Figures 62 and 63 for many steps ahead forecasting.

6.5 Conclusion

Accurate forecasting of complex dynamics systems, as several natural and social
processes, is a challenging task specially when the underlying system is composed by many
interacting variables. For FTS methods, dealing with multivariate and spatio-temporal
time series was always a challenging task, specially because of the complexity growth of
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Figure 55 – RMSE point forecasting accuracy for one step ahead

Figure 56 – Sample of point and interval forecasts for one step ahead by multivariate
method

the rules as the number of variables increases.

This section presented a short overview of multivariate FTS methods, focusing on
the rule based conventional Multivariate Fuzzy Time Series (MVFTS) and its weighted
version WMVFTS.

In order to extend the PWFTS method to multivariate time series, the method
Fuzzy Information Granule FTS (FIG-FTS) was proposed. FIG-FTS is a wrapper method
that pre-process the multivariate input translating it onto a monovariate and allowing
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Figure 57 – Sample of point and interval forecasts for many steps ahead by multivariate
method

Figure 58 – Winkler interval forecasting accuracy for one step ahead

its use by monovariate methods. FIG-FTS makes use of Fuzzy Information Granules
(FIG), which in this work is a multivariate fuzzy set incrementally created during the
fuzzyfication stage.

With FIG-FTS, the PWFTS extends its foreasting capabilities to multivariate
data, being the first multivariate FTS method to forecast points, intervals and probability
distributions.
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Figure 59 – CRPS probabilistic forecasting accuracy for one step ahead

Figure 60 – Sample of FIG-FTS probabilistic forecasting for one step ahead

6.5.1 Method limitations

FIG-FTS produces non-parsimonious methods that can be computationally
expensive. In order to optimize the models, both in terms of accuracy and parsimony, it is
advisable to fine tunning the hyperparameters of each variable, as well as to optimize the
choose of the best variables of the model.
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Figure 61 – Shape of FIG-FTS probabilistic distributions for one step ahead

Figure 62 – Sample of FIG-FTS probabilistic forecasting for many steps ahead
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Figure 63 – Shape of FIG-FTS probabilistic distributions for many steps ahead
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Chapter 7

Conclusion

“...it is good to have measured myself, to recognize my limitations.”

— Charles Francis Richter

On the forecasting research field, dealing with uncertainties is somehow mandatory,
but still many of the forecasting methods are only concerned with point forecasting. The
point forecasting methods have as their main general drawback the inability to measure
the uncertainty of their results and, depending on the field of application, this is a
crucial information. The direct alternative are the probabilistic methods as intervals and
probability distributions Gneiting and Katzfuss [2014].

There are statistical forecasting methods available for probabilistic and interval
forecasting, as instance Auto Regressive Integrated Moving Average (ARIMA), Quantile
Auto-Regression (QAR), Bayesian Structural Time Series (BSTS), k-Nearest Neighbors
(k-NN), among others. However these methods suffer from several limitations as lack of
scalability, parametric assumptions, explainability or computational performance.

In the other hand, the Fuzzy Time Series (FTS) methods represent a growing
field that has been gaining more attention in recent years. FTS forecasting methods
produce data driven and non-parametric models, and have become attractive due to their
simplicity, versatility, forecasting accuracy and computational performance, and it also
produces human readable representations of the time series patterns, making its knowledge
transferable, auditable, easily reusable and updatable. The variants of Fuzzy Time Series
methods were investigated on Chapter 2. Within these variants, this work delimited its
scope on time invariant rule-based FTS methods. The rule-based conventional High-Order
Fuzzy Time Series (HOFTS) and the Weighted High-Order Fuzzy Time Series (WHOFTS)
were studied and its accuracy was assessed and compared with conventional statistical
forecasting methods which showed accuracy equivalence between the methods.

However, the FTS methods also suffer from lack of forecasting uncertainty repre-
sentation, more specifically the absence of probabilistic forecasting methods. To deepen
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the discussion about the probabilistic forecasting, the Chapter 3 presented a review of
the classical methods for interval and probability distribution forecasting and its main
features. In order to fill the probabilistic forecasting gap at FTS field, the three first FTS
methods for probabilistic forecasting in literature were proposed : [I]FTS, W [I]FTS and
Ensemble FTS.

[I]FTS and W [I]FTS extends HOFTS and WHOFTS methods, enabling the
generating of predict intervals that represents the fuzzy uncertainty around the point
forecasts. The Ensemble FTS method aims to represent the parameter uncertainty by
embodying internally several FTS models with variations in their parameters. Ensemble
FTS is capable to forecast intervals and probability distributions for one to more steps
ahead. The accuracy of these methods was assessed and compared with the main statistical
probabilistic methods which showed their accurate performance.

Nevertheless, until this point still missing a method that incorporate all uncer-
tainties, capable to forecast points, intervals and probability distributions, for one to more
steps ahead. To fill this lack the Probabilistic Weighted Fuzzy Time Series (PWFTS)
method were proposed on Chapter 4. The PWFTS method use empirical fuzzy probabilities
associated with their rules to represent the ontological uncertainty of data, and propose
new deffuzyfication methods that exploit this probabilities. The PWFTS accuracy was
assessed with computational experiments, compared with the previous FTS methods and
the classical methods which showed the effectivenes of the method.

The main contribution of PWFTS is to combine versatility, accuracy and human
readability. PWFTS is a versatile data driven, non parametric approach which integrates
point, interval and probabilistic forecasting for one or multiple steps ahead, for first or
higher orders. The measured accuracy shows its compatibility with, when it is not better
than, standard approaches in the literature. The PWFTPG rule model is human-readable,
easy to understand and interchangeable, which allows its assessment by experts and also
non technical people. The PWFTPG rule set can be viewed as the conditional probability
distribution of the fuzzy sets, and its visualization can even be used for data description
and comprehension tasks.

Once flexible and accurate FTS models were proposed, new questions arise as
result of its employment in real world problems, as instance big data scalability, model
optimization and multivariate time series. The first question, discussed in Chapter 5,
concerns in the impact of the data volume on FTS training and forecasting performances.
The optimization of machine learning models for big time series is a challenging task to
execute with sequential procedures or even parallel ones executed on a single machine.
Thanks to the distributed computation frameworks, these methods are now enabled to
work with massive datasets using cheap and available hardware infrastructure.To tackle
this problem a distributed training method was proposed for computational clusters of
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commodity hardware using the Map/Reduce paradigm.

The second question concerns in the hyperparameter optimization which search
for accurate and simultaneously parsimonic models. Generally, in fuzzy time series models,
the increase of the number of rules leads to improvement on accuracy. But there is a trade
off between the increase of the number of rules and the model overfitting. The Distributed
Evolutionary Hyperparameter Optimization (DEHO) method is proposed embracing the
distributed training and genetic algorithms, producing accurate and parsimonic models in
feasible time.

The last question concerns in the forecasting of complex dynamics systems com-
posed by many interacting variables. Dealing with multivariate and spatio-temporal time
series was always a challenging task for FTS methods, specially because of the complexity
growth of the rules as the dimension increases. To acomplish this task, in Chapter 6,
the Fuzzy Information Granular Fuzzy Time Series method (FIG-FTS) is proposed, an
approach that incorporates Fuzzy Information Granules (FIG) to the FTS methodology in
order to simplify the processing of the multivariate crisp data. First, individual Universe of
Discourse partitioning schemes are provided for each variable and then Fuzzy Information
Granules Gi are created as combinations of the fuzzy sets of the variables. Each G is created
on demand, on the fuzzyfication phase, by selecting one fuzzy set of each variable. After
that, each multivariate data point can be replaced by an univariate one, identified with a
corresponding G.

This work performed computational experiments to assess the FIG-FTS method
performance, and applied the proposed method to model and forecast the

In this way, the proposed method family is useful for a wide range of applications
and user needs due its flexibility and customizability. The experimental analysis showed
the effectiveness of the proposed methods and their flexibility on several scenarios.

7.1 Summary of contributions

• First interval forecasting approaches for FTS methods: Interval Fuzzy Time Series
([I]FTS), Weighted Interval Fuzzy Time Series(W [I]FTS), Ensemble FTS, Proba-
bilistic Weighted Fuzzy Time Series (PWFTS) and Fuzzy Information Granule Fuzzy
Time Series (FIG-FTS);

• First probabilistic forecasting approaches for FTS methods: Ensemble FTS, PWFTS
and FIG-FTS;

• The PWFTS method, an high-order integrated method capable to produce point,
interval and probabilistic forecasts for one and many steps ahead, with a white-box
model;
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• Two new scalability approaches for FTS distributed training and forecasting using
clusters of commodity hardware;

• The Distributed Evolutionary Hyperparameter Optimization (DEHO) method, an
optimization engine for FTS models;

• FIG-FTS an extension of PWFTS for multivariate data, bringing all features of
PWFTS method to the multivariate time series.

• pyFTS - An free and open source library for Fuzzy Time Series in Python language
to grant the research reproducibility and easy employment.

7.2 Summary of methods limitations

This research limited its scope to rule based time-invariant methods, which reduced
the applicability of the proposed methods to stationary and well behaved time series with
or without data pre-processing.

The presented methods lacks abilities on forecasting with trend and demands
previous data transformations to deal with this kind of time series. It also lacks mechanisms
to deal with concept drifts a heteroskedastic time series. Despite being easily upgradable,
the models produced by the proposed methods needs to be frequently updated to follow
new data behaviors. For the presented non-weighted methods, outliers may be hard to trick
and can reduce the accuracy of the methods. It is advisable to perform outlier removal
pre-processing tasks before train the models.

On PWFTS method, as the order and number of partitions increases the a priori
probabilities may vanish to very low numbers, limited to the computational numerical
precision.

The tuning of multivariate models is an open issue, demanding new hyperparameter
optimization strategies. Without tuning, the models produced by FIG-FTS methods are
not parsimonious and can be computationally expensive.

7.3 Future Investigations

Some future research directions must be pointed, some of them extracted from
methods limitations:

• Time variant extensions for the proposed methods should be investigated, including
the use of non-stationary fuzzy sets proposed by Garibaldi et al. [2008];
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• The use of Approximate Bayesian Methods will be examined for the substitution of
the πk fixed probabilities for probability distributions, to embrace the uncertainty of
these quantities;

• Extension of DEHO method for MVFTS and FIG-FTS should be investigated;

• A new probabilistic forecasting method that produces joint probability distributions
for multivariate forecasting in FIG-FTS should be investigated.

7.4 Publications

From this research methods the following publications were extracted:

7.4.1 Journal Papers

1. SILVA, Petrônio C. L.; SADAEI, Hossein J. ; BALLINI, Rosângela ; GUIMARÃES,
Frederico G. . Probabilistic Forecasting With Fuzzy Time Series. IEEE Transactions
on Fuzzy Systems, v. 1, p. 1-1, 2019. DOI: 10.1109/tfuzz.2019.2922152

2. SADAEI, Hossein J.; SILVA, Petrônio C. L.; GUIMARÃES, Frederico G.; LEE,
Muhammad H. Short-term load forecasting by using a combined method of convo-
lutional neural networks and fuzzy time series. ENERGY, v. 174, p. 1, 2019. DOI:
10.1016/j.energy.2019.03.081

7.4.2 Conference Papers

1. ALVES, M. A.; ALMEIDA, L. V. V. B.; REZENDE, T. M.; SILVA, P. C. L. S.;
SEVERIANO, C. A.; SILVA, R.; GUIMARÃES, F. G. Otimização Dinâmica Evolu-
cionária para Despacho de Energia em uma Microrrede usando Veículos Elétricos. In
14o Simpósio Brasileiro de Automação Inteligente - SBAI’19, Ouro Preto, 2019.

2. LUCAS, P. O. E.; SILVA, P. C. L. S.; GUIMARÃES, F. G. Otimização Evolutiva
de Hiperparâmetros para Modelos de Séries Temporais Nebulosas. In 14o Simpósio
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3. SILVA, Petrônio C. L.; SEVERIANO Jr., Carlos A.; ALVES, Marcos A. ; COHEN,
Miri W.; GUIMARÃES, Frederico G. A New Granular Approach for Multivari-
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Communications in Computer and Information Science, 2019.

4. SILVA, Petrônio C. L.; LUCAS, Patrícia O. ; GUIMARÃES, Frederico G. A Dis-
tributed Algorithm for Scalable Fuzzy Time Series. Lecture Notes in Computer
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Appendix A

Monovariate Benchmark Datasets

The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX)1 is a
well known economic time series data commonly used in the FTS literature. This dataset is
sampled from 1995 to 2014 time window, and has the averaged daily index by business day.
This is a stationary time series dataset whose Augmented Dickey-Fuller (ADF) statistic is
−2.65 where the critical value for α = 0.05 is −2.86.

The National Association of Securities Dealers Automated Quotations - Composite
Index (NASDAQ ÎXIC)2 is an economical index already used in the FTS literature . The
historical data was sampled from 2000 to 2016 time window, and has the averaged daily
index by business day. This is a stationary time series dataset whose ADF statistic is 0.04

where the critical value for α = 0.05 is −2.86.

The S&P500 - Standard & Poor’s 500 3 is a market index composed by 500 assets
quoted on New York Stock Exchange and Nasdaq. This dataset contains the averaged
daily index, by business day, from 1950 to 2017 with 16000 instances. This is a stationary
dataset whose ADF Statistic is 0.00 where critical value for α = 0.05 is −2.86.

In order to contribute with the research reproducibility, all data and source codes
are available in the following URL http://bit.ly/scalable_probabilistic_fts_appA.

1 http://www.twse.com.tw/en/products/indices/Index_Series.php. Access in 23/05/2016
2 http://www.nasdaq.com/aspx/flashquotes.aspx?symbol=IXIC&selected=IXIC. Access in

23/05/2016
3 https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC. Access in 19/03/2017

http://bit.ly/scalable_probabilistic_fts_appA
http://www.twse.com.tw/en/products/indices/Index_Series.php
http://www.nasdaq.com/aspx/flashquotes.aspx?symbol=IXIC&selected=IXIC
https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC


180 Appendix A. Monovariate Benchmark Datasets

Figure 64 – Benchmark datasets

Figure 65 – Autocorrelation and Partial Autocorrelation plots for each benchmark dataset
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Appendix B

Multivariate and Large Benchmark
Datasets

In recent years the search for renewable energy sources has grown and, as most of
them are not perennial power sources, its integration on smart environments will require
ability to predict their output generation.

In order to contribute with the research reproducibility, all data and source codes
are available in the following URL http://bit.ly/scalable_probabilistic_fts_appB.

B.1 SONDA dataset

The Project SONDA - Sistema de Organização Nacional de Dados Ambientais
(Brazilian National System of Environmental Data Organization), is a governmental project
which groups environmental data (solar radiance, wind speed, precipitation, etc) from
INPE - Instituto Nacional de Pesquisas Espaciais (Brazilian Institute of Space Research).
The chosen variables are the global solar horizontal radiation and the wind speed at 10
meters, both from the Brasilia telemetry station1, recorded between 2012 and 2015, by
minute, summing 2 million instances. This dataset was retrieved directly from the SONDA
Project page at http://sonda.ccst.inpe.br/2

Variable Type Description
DateTime Time Stamp yyyy-MM-dd HH:MM
glo_avg Real Global average solar radiation in
ws_10m Real Wind speed in meters by second (m/s)

Table 40 – SONDA dataset variables

1 Code: BRB. Coordinates: 15◦36’ 03" S 47◦42’47" O. Alt.: 1023m
2 Access in 19/05/2019

http://bit.ly/scalable_probabilistic_fts_appB
http://sonda.ccst.inpe.br/
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Figure 66 – SONDA dataset samples

Figure 67 – Autocorrelation and Partial Autocorrelation plots for SONDA dataset

B.2 Malaysia dataset

Hourly electric load and temperature data of the power supply company of the
city of Johor in Malaysia sampled between 2009 and 2010, with 17,519 instances. This
dataset was retrieved from Sadaei et al. [2019].

Variable Type Description
DateTime Time Stamp yyyy-MM-dd HH:MM
temperature Real Temperature in Celcius degrees (oC)

load Integer Eletric load in Mega Watts by hour (MW/h)

Table 41 – Malaysia dataset variables
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Figure 68 – Malaysia dataset samples

Figure 69 – Autocorrelation and Partial Autocorrelation plots for Malaysia dataset
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