Poster Open Access
Manica Matteo; Cadow Joris; Mathis Roland; Rodriguez Martinez Maria
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Manica Matteo</dc:creator> <dc:creator>Cadow Joris</dc:creator> <dc:creator>Mathis Roland</dc:creator> <dc:creator>Rodriguez Martinez Maria</dc:creator> <dc:date>2019-08-22</dc:date> <dc:description>What • Accurate phenotype classification • Biological interpretability • Robustness to noise • Handling curse of dimensionality How Exploit prior knowledge from biological networks • Apply multiple kernel learning for feature encoding • Use pathway annotations to enable interpretability</dc:description> <dc:identifier>https://zenodo.org/record/3374413</dc:identifier> <dc:identifier>10.5281/zenodo.3374413</dc:identifier> <dc:identifier>oai:zenodo.org:3374413</dc:identifier> <dc:relation>info:eu-repo/grantAgreement/EC/H2020/668858/</dc:relation> <dc:relation>doi:10.5281/zenodo.3374412</dc:relation> <dc:relation>url:https://zenodo.org/communities/ipc</dc:relation> <dc:relation>url:https://zenodo.org/communities/precise</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>multiple kernel learning</dc:subject> <dc:title>PIMKL: Pathway Induced Multiple Kernel Learning</dc:title> <dc:type>info:eu-repo/semantics/conferencePoster</dc:type> <dc:type>poster</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 158 | 158 |
Downloads | 91 | 91 |
Data volume | 193.1 MB | 193.1 MB |
Unique views | 151 | 151 |
Unique downloads | 90 | 90 |