Poster Open Access
Manica Matteo; Cadow Joris; Mathis Roland; Rodriguez Martinez Maria
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3374413</identifier> <creators> <creator> <creatorName>Manica Matteo</creatorName> </creator> <creator> <creatorName>Cadow Joris</creatorName> </creator> <creator> <creatorName>Mathis Roland</creatorName> </creator> <creator> <creatorName>Rodriguez Martinez Maria</creatorName> </creator> </creators> <titles> <title>PIMKL: Pathway Induced Multiple Kernel Learning</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>multiple kernel learning</subject> </subjects> <dates> <date dateType="Issued">2019-08-22</date> </dates> <resourceType resourceTypeGeneral="Text">Poster</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3374413</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3374412</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ipc</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/precise</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>What</p> <p>&bull; Accurate phenotype classification<br> &bull; Biological interpretability<br> &bull; Robustness to noise<br> &bull; Handling curse of dimensionality</p> <p>How</p> <p>Exploit prior knowledge from biological<br> networks<br> &bull; Apply multiple kernel learning for<br> feature encoding<br> &bull; Use pathway annotations to enable<br> interpretability</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/668858/">668858</awardNumber> <awardTitle>PERSONALIZED ENGINE FOR CANCER INTEGRATIVE STUDY AND EVALUATION</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 158 | 158 |
Downloads | 91 | 91 |
Data volume | 193.1 MB | 193.1 MB |
Unique views | 151 | 151 |
Unique downloads | 90 | 90 |