Poster Open Access
Manica Matteo; Oskooei Ali; Born Jannis; Subramanian Vigneshwari; Saez-Rodriguez Julio; Rodriguez Martinez Maria
{ "description": "<p>PaccMann tackles the challenging problem of drug sensitivity prediction adopting a holistic approach.<br>\nThe model was trained on data from Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "@type": "Person", "name": "Manica Matteo" }, { "@type": "Person", "name": "Oskooei Ali" }, { "@type": "Person", "name": "Born Jannis" }, { "@type": "Person", "name": "Subramanian Vigneshwari" }, { "@type": "Person", "name": "Saez-Rodriguez Julio" }, { "@type": "Person", "name": "Rodriguez Martinez Maria" } ], "url": "https://zenodo.org/record/3374375", "datePublished": "2019-08-22", "@type": "CreativeWork", "keywords": [ "drug sensitivity" ], "@context": "https://schema.org/", "identifier": "https://doi.org/10.5281/zenodo.3374375", "@id": "https://doi.org/10.5281/zenodo.3374375", "workFeatured": { "url": "https://www.iscb.org/ismbeccb2019-program/tutorials", "alternateName": "ISMB/ECCB 2019", "location": "Basel, Switzerland", "@type": "Event", "name": "27th Conference on Intelligent Systems for Molecular Biology and the 18th European Conference on Computational Biology" }, "name": "Using attention-based neural networks to enable explainable drug sensitivity prediction on multimodal data" }
All versions | This version | |
---|---|---|
Views | 117 | 117 |
Downloads | 80 | 80 |
Data volume | 405.5 MB | 405.5 MB |
Unique views | 104 | 104 |
Unique downloads | 79 | 79 |