Poster Open Access
Manica Matteo; Oskooei Ali; Born Jannis; Subramanian Vigneshwari; Saez-Rodriguez Julio; Rodriguez Martinez Maria
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/a2fe5f39-f1f9-4ad8-b930-d7777c299a70/paccmann.pdf" }, "checksum": "md5:f47f130a3add5a09031d60545f3e3c30", "bucket": "a2fe5f39-f1f9-4ad8-b930-d7777c299a70", "key": "paccmann.pdf", "type": "pdf", "size": 5068142 } ], "owners": [ 65392 ], "doi": "10.5281/zenodo.3374375", "stats": { "version_unique_downloads": 79.0, "unique_views": 104.0, "views": 117.0, "version_views": 117.0, "unique_downloads": 79.0, "version_unique_views": 104.0, "volume": 405451360.0, "version_downloads": 80.0, "downloads": 80.0, "version_volume": 405451360.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3374375", "conceptdoi": "https://doi.org/10.5281/zenodo.3374374", "bucket": "https://zenodo.org/api/files/a2fe5f39-f1f9-4ad8-b930-d7777c299a70", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3374374.svg", "html": "https://zenodo.org/record/3374375", "latest_html": "https://zenodo.org/record/3374375", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3374375.svg", "latest": "https://zenodo.org/api/records/3374375" }, "conceptdoi": "10.5281/zenodo.3374374", "created": "2019-08-22T11:57:31.850878+00:00", "updated": "2020-01-20T17:08:25.081005+00:00", "conceptrecid": "3374374", "revision": 4, "id": 3374375, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3374375", "description": "<p>PaccMann tackles the challenging problem of drug sensitivity prediction adopting a holistic approach.<br>\nThe model was trained on data from Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)</p>", "license": { "id": "CC-BY-4.0" }, "title": "Using attention-based neural networks to enable explainable drug sensitivity prediction on multimodal data", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3374374" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3374375" } } ] }, "communities": [ { "id": "ipc" } ], "grants": [ { "code": "826121", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::826121" }, "title": "individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology", "acronym": "iPC", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "drug sensitivity" ], "publication_date": "2019-08-22", "creators": [ { "name": "Manica Matteo" }, { "name": "Oskooei Ali" }, { "name": "Born Jannis" }, { "name": "Subramanian Vigneshwari" }, { "name": "Saez-Rodriguez Julio" }, { "name": "Rodriguez Martinez Maria" } ], "meeting": { "acronym": "ISMB/ECCB 2019", "url": "https://www.iscb.org/ismbeccb2019-program/tutorials", "dates": "21-25 July 2019", "place": "Basel, Switzerland", "title": "27th Conference on Intelligent Systems for Molecular Biology and the 18th European Conference on Computational Biology" }, "access_right": "open", "resource_type": { "type": "poster", "title": "Poster" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3374374", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 117 | 117 |
Downloads | 80 | 80 |
Data volume | 405.5 MB | 405.5 MB |
Unique views | 104 | 104 |
Unique downloads | 79 | 79 |