Poster Open Access
Manica Matteo; Oskooei Ali; Born Jannis; Subramanian Vigneshwari; Saez-Rodriguez Julio; Rodriguez Martinez Maria
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3374375</identifier> <creators> <creator> <creatorName>Manica Matteo</creatorName> </creator> <creator> <creatorName>Oskooei Ali</creatorName> </creator> <creator> <creatorName>Born Jannis</creatorName> </creator> <creator> <creatorName>Subramanian Vigneshwari</creatorName> </creator> <creator> <creatorName>Saez-Rodriguez Julio</creatorName> </creator> <creator> <creatorName>Rodriguez Martinez Maria</creatorName> </creator> </creators> <titles> <title>Using attention-based neural networks to enable explainable drug sensitivity prediction on multimodal data</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>drug sensitivity</subject> </subjects> <dates> <date dateType="Issued">2019-08-22</date> </dates> <resourceType resourceTypeGeneral="Text">Poster</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3374375</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3374374</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ipc</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>PaccMann tackles the challenging problem of drug sensitivity prediction adopting a holistic approach.<br> The model was trained on data from Genomics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/826121/">826121</awardNumber> <awardTitle>individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 117 | 117 |
Downloads | 80 | 80 |
Data volume | 405.5 MB | 405.5 MB |
Unique views | 104 | 104 |
Unique downloads | 79 | 79 |