Journal article Open Access

Discovering the Hidden Community Structure of Public Transportation Networks

László Hajdu; András Bóta; Miklós Krész; Alezira Khani; Lauren M. Gardner

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="URL"></identifier>
      <creatorName>László Hajdu</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0002-1832-6944</nameIdentifier>
      <affiliation>University of Szeged Institute of Informatics</affiliation>
      <creatorName>András Bóta</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="">0000-0002-0322-8698</nameIdentifier>
      <affiliation>Integrated Science Lab, Department of Physics, Ume°a University, SE-901 87 Ume°a, Sweden and Research Centre for Integrated Transport Innovation, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia</affiliation>
      <creatorName>Miklós Krész</creatorName>
      <affiliation>Innorenew CoE, University of Primorska Andrej Marušic Institute, University of Szeged Gyula Juhász Faculty of Education</affiliation>
      <creatorName>Alezira Khani</creatorName>
      <affiliation>Department of Civil, Environmental and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive SE, Minneapolis, MN 55455, USA</affiliation>
      <creatorName>Lauren M. Gardner</creatorName>
      <affiliation>Research Centre for Integrated Transport Innovation, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia, and Department of Civil Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA</affiliation>
    <title>Discovering the Hidden Community Structure of Public Transportation Networks</title>
    <subject>Network modeling</subject>
    <subject>Public Transportation</subject>
    <subject>Community Structure</subject>
    <subject>Infrastructure security</subject>
    <date dateType="Issued">2019-08-20</date>
  <resourceType resourceTypeGeneral="JournalArticle"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/s11067-019-09476-3</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf"></relatedIdentifier>
    <rights rightsURI="">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Advances in public transit modeling and smart card technologies can reveal detailed contact patterns of passengers. A natural way to represent such contact patterns is in the form of networks. In this paper we utilize known contact patterns from a public transit assignment model in a major metropolitan city, and propose the development of two novel network structures, each of which elucidate certain aspects of passenger travel behavior. We first propose the development of a transfer network, which can reveal passenger groups that travel together on a given day. Second, we propose the development of a community network, which is derived from the transfer network, and captures the similarity of travel patterns among passengers. We then explore the application of each of these network structures to identify the most frequently used travel paths, i.e., routes and transfers, in the public transit system, and model epidemic spreading risk among passengers of a public transit network, respectively. In the latter our conclusions reinforce previous observations, that routes crossing or connecting to the city center in the morning and afternoon peak hours are the most &amp;ldquo;dangerous&amp;rdquo; during an outbreak.&lt;/p&gt;</description>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/739574/">739574</awardNumber>
      <awardTitle>Renewable materials and healthy environments research and innovation centre of excellence</awardTitle>
Views 294
Downloads 166
Data volume 1.2 GB
Unique views 244
Unique downloads 150


Cite as