Conference paper Open Access

Artificial Neural Networks: the missing link between curiosity and accuracy

Franchini, Giorgia; Zanni, Luca; Burgio, Paolo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-08-19</subfield>
  </datafield>
  <controlfield tag="005">20200120150636.0</controlfield>
  <controlfield tag="001">3370961</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3370961</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Artificial Neural Networks, as the name itself suggests, are biologically inspired algorithms designed to simulate the way in which the human brain processes information. Like neurons, which consist of a cell nucleus that receives input from other neurons through a web of input terminals, an Artificial Neural Network includes hundreds of single units, artificial neurons or processing elements, connected with coefficients (weights), and are organized in layers. The power of neural computations comes from connecting neurons in a network: in fact, in an Artificial Neural Network it is possible to manage a different number of information at the same time. What is not fully understood is which is the most efficient way to train an Artificial Neural Network, and in particular what is the best mini-batch size for maximize accuracy while minimizing training time. The idea that will be developed in this study has its roots in the biological world, that inspired the creation of Artifi- cial Neural Network in the first place.&lt;/p&gt;

&lt;p&gt;Humans have altered the face of the world through extraordinary adap- tive and technological advances: those changes were made possible by our cognitive structure, particularly the ability to reasoning and build causal models of external events. This dynamism is made possible by a high degree of curiosity. In the biological world, and especially in human beings, curiosity arises from the constant search of knowledge and infor- mation: behaviours that support the information sampling mechanism range from the very small (initial mini-batch size) to the very elaborate sustained (increasing mini-batch size).&lt;/p&gt;

&lt;p&gt;The goal of this project is to train an Artificial Neural Network by in- creasing dynamically, in an adaptive manner (with validation set), the mini-batch size; our hypothesis is that this training method will be more efficient (in terms of time and costs) compared to the ones implemented so far.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Modena and Reggio Emilia</subfield>
    <subfield code="a">Zanni, Luca</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Modena and Reggio Emilia</subfield>
    <subfield code="a">Burgio, Paolo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">683060</subfield>
    <subfield code="z">md5:4e61e3d392347e26b7ec377fa3443128</subfield>
    <subfield code="u">https://zenodo.org/record/3370961/files/ANN.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Modena and Reggio Emilia</subfield>
    <subfield code="a">Franchini, Giorgia</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">artificial neural network</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">stochastic gradient</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">mini-batch size increasing</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-030-16660-1_100</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Artificial Neural Networks: the missing link between curiosity and accuracy</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780622</subfield>
    <subfield code="a">Edge and CLoud Computation: A Highly Distributed Software Architecture for Big Data AnalyticS</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
45
71
views
downloads
Views 45
Downloads 71
Data volume 48.5 MB
Unique views 41
Unique downloads 66

Share

Cite as