There is a newer version of this record available.

Software Open Access

Machine Learning Models for Predicting Kinase Inhibitors with Different Binding Modes

Miljković, Filip; Rodríguez-Pérez, Raquel; Bajorath, Jürgen


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">protein kinases</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">kinase inhibitors</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">inhibitor binding modes</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">classification models</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">X-ray data</subfield>
  </datafield>
  <controlfield tag="005">20200407202906.0</controlfield>
  <controlfield tag="001">3370478</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</subfield>
    <subfield code="a">Rodríguez-Pérez, Raquel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</subfield>
    <subfield code="0">(orcid)0000-0002-0557-5714</subfield>
    <subfield code="a">Bajorath, Jürgen</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">386388865</subfield>
    <subfield code="z">md5:981d640862e7c5bb485e30ecfd8fff8d</subfield>
    <subfield code="u">https://zenodo.org/record/3370478/files/ML_Kinases.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-08-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o">oai:zenodo.org:3370478</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</subfield>
    <subfield code="a">Miljković, Filip</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning Models for Predicting Kinase Inhibitors with Different Binding Modes</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Random forest (RF), support-vector machine (SVM), and deep neural network (DNN) models for predicting kinase inhibitors with different binding modes in X-ray structures are made available together with the data sets used for training and testing.&lt;/p&gt;

&lt;p&gt;Please refer to READ_ME.txt for more information.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3370477</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3370478</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
1,007
590
views
downloads
All versions This version
Views 1,007826
Downloads 590434
Data volume 189.7 GB167.7 GB
Unique views 856741
Unique downloads 354274

Share

Cite as