There is a newer version of this record available.

Software Open Access

Machine Learning Models for Predicting Kinase Inhibitors with Different Binding Modes

Miljković, Filip; Rodríguez-Pérez, Raquel; Bajorath, Jürgen


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3370478">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3370478</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3370478"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Miljković, Filip</foaf:name>
        <foaf:givenName>Filip</foaf:givenName>
        <foaf:familyName>Miljković</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Rodríguez-Pérez, Raquel</foaf:name>
        <foaf:givenName>Raquel</foaf:givenName>
        <foaf:familyName>Rodríguez-Pérez</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-0557-5714">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-0557-5714</dct:identifier>
        <foaf:name>Bajorath, Jürgen</foaf:name>
        <foaf:givenName>Jürgen</foaf:givenName>
        <foaf:familyName>Bajorath</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany.</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Machine Learning Models for Predicting Kinase Inhibitors with Different Binding Modes</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>protein kinases</dcat:keyword>
    <dcat:keyword>kinase inhibitors</dcat:keyword>
    <dcat:keyword>machine learning</dcat:keyword>
    <dcat:keyword>inhibitor binding modes</dcat:keyword>
    <dcat:keyword>classification models</dcat:keyword>
    <dcat:keyword>X-ray data</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-08-18</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3370478"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3370478</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3370477"/>
    <dct:description>&lt;p&gt;Random forest (RF), support-vector machine (SVM), and deep neural network (DNN) models for predicting kinase inhibitors with different binding modes in X-ray structures are made available together with the data sets used for training and testing.&lt;/p&gt; &lt;p&gt;Please refer to READ_ME.txt for more information.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3370478"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3370478"/>
        <dcat:byteSize>386388865</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3370478/files/ML_Kinases.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
1,009
590
views
downloads
All versions This version
Views 1,009828
Downloads 590434
Data volume 189.7 GB167.7 GB
Unique views 858743
Unique downloads 354274

Share

Cite as