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ABSTRACT

Language-based security is a mechanism for analysis and rewriting applications toward guaranteeing
security policies. By use of such mechanism issues like access control by employing a computing base
would run correctly. Most of security problems in software applications were previously handled by this
component due to low space of operating system kernel and complicacy. These days this task by virtue of
increasing space of OS applications and their natural complicacy is fulfilled by novel proposed
mechanisms which one of them is treated as security establishment or using programming languages
techniques to apply security policies on a specific application. Language-based security includes
subdivisions such as In-lined Reference Monitor, Certifying Compiler and improvements to Type which
would be described individually later.
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1. INTRODUCTION

Growing use of the Internet, security of mobile codes is one of important challenges and issues in
today’s computational researches. On increasing our dependency on large global networks such
as the Internet and receiving their services in order to perform personal routines and spread global
information over these global networks and even download from this perilous area is potentially
susceptible to destructive attacks from attackers and may be followed by irrecoverable effects.
We do not still forget pernicious attacks such as “Mellisa” and “Happy 99” and while
downloading plug-ins in the internet packages careful attention is needed and how exhaustive
outcomes they have caused. Recent researches show these types of security issues are on the rise.

New studies reveal vital foundations such as transportation, communication, financial markets,
energy distribution, health and etc. fully rely on a computing basis which can hardly be a bare
justification. We have hazardously depended on big software systems which their behaviours do
not totally penetrate and most of failures occur unpredictably. Thus it is a necessity as to how to
utilize the internet applications through safe and secure. Today with respect to expansion of
computational environments, safety topic in term of mobile codes is indispensible. For instance,
having downloaded an application from the internet from an unknown source how could we
warrant it would not carry an unwanted file which may put system safety as risk?
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A way for understanding of the situation is use of language-based security. Throughout the
method, security information of an application programmed in a high-level language is extracted
during compilation of the application that is a compiled object. The extra security information
includes formal proof, notes about the type or other affirmable documents. The compiled object is
likely to be created alongside destination code and before running the main code is automatically
examined to warn of errors types or unauthorized acts. “Java ByeCode” affirmative is an example
for the issue in question. The chief challenge is as to how to create such mechanisms such that in
the first place they have the desirable performance and in the second place they are not revealing
to others as much as possible [1].

Following the paper, we declare motivation for language-based security methods toward
guaranteeing security in section 2. The issue literature is reviewed in section 3. Traditional
actions to affirm the security in computer systems are investigated in section 4. In section 5
language-based security framework and later desirable techniques are explained in section 6 and a
case study on safe and unsafe language are presented in section 7. Finally in section 8 the
conclusion is drawn.

2. MOTIVATION

Computer security is usually practicable by operating systems at a comprehensive level.  Despite
of growth of operating systems both in size and in complicacy, applying computer security
policies is drastically difficult. For this reason, new attacks likely occur against operating systems
security mechanisms which may be followed by successes. To speak more accurately, computer
systems fulfil computer security mechanisms at a lower level such as access control or
maintenance of files while most of beneficial practices are all high-level or at a specific level of
convention such as pernicious worms breaking into computer systems by email applications. The
keynote, in here is to offer a specific convention for each dangerous attack and practice then to
guarantee security. Thus operating systems kernels only confirm coarse-grained policies.

Such assurance is considered ad hoc and since applications are programmed in specific
languages, guaranteeing security for specific applications with the help of programming
languages is a predominant topic on which many researchers have performed and are known as
language-based security.

The significant advantage of language-based security toward security assurance of applications is
that security policies and execution mechanisms are performed by expanded techniques in
programming languages and this situation is created by natural capabilities of programming
languages. Security assurance in computer systems with respect to language-based techniques and
advances in programming languages has drastically developed [7]. Language-based principal
framework is shown in figure 1.

3. A REVIEW ON ISSUE LITERATURE

3.1. Two Principles in Computer Security

To understand language-based security more accurately we need to introduce two principles in
computer security systems and provide them with detail descriptions.

• Principle of Least Privilege (PoLP): while running accomplishment policies, each
principle is supposed to have least possible access to be applied.
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• Minimal Trusted Computing Based (MTCB): components which should operate
properly to confirm execution system properties, such as operating system kernel and
hardware. That is mechanism in use fulfills big tasks while small. Smaller and simpler
systems have less errors and improper interactions which is quite appropriate to install
safety.

To guarantee security policies two principles PoLP and MTCB are still valid, however some new
mechanisms and safety policies are required. This is an impetus toward designating update safety
policies and optimal execution mechanisms on action systems basis.

3.2. Necessary Words

To understand, some of the most important concepts are listed below:

Reference Monitor: references monitor how programs run in the objective system and if the
system sidesteps a security policy, it would prevent it from proceeding. Security mechanisms may
be installed on system hardware and system software usually either implements reference
monitors directly or facilitates their implementation. For instance operating system as a software
agent implements a reference monitor in order to make files accessible while switching context or
trap occurrence, operating system causes evoking system commands by control transmission. To
do so operating system or reference monitor should remain safe against interruption. Thus
reference monitor program must be kept in a memory section to be guarded from hardware point
of view.

Safety Policy: confirms an application runs at a desirable safety level and adopts different
meanings in different areas. A safe status definition for an application, safety policy is specific
purpose for that application for example we need vital system data never to be overwritten, it is in
here a failure occurs and control software should signal a message.

Generally speaking every safety policies must guarantee preliminary safety properties for an
uncertain machine code running locally on a system:

• Flow Control Safety: all branches, jumps and evocations to a random location should
within address space of program instruction. All evocation should point to valid
functions within program instruction section. Moreover, all return addresses from
procedures and subprograms must remain within program code space as well.

• Memory Safety: all program accesses to data memory stay within memory section, heap
memory and stack space earmarked to that specific program.

• Stack Safety: for architectures utilizing stacks in order to store return addresses from
subprograms and procedures while running programs it is a crucial issue that at the top
section of stack which these addresses are kept minor errors occur because of
possibility of address deletion.

Another problem forming on the side is known as Type Safety or less famous Typing Discipline
which in this method raw data and codes are allocated destinations. Return type of a regular
function is assessed by destinations of its input variables. Assuming we have a function accepting
integer values. If the output is as below while returning from function and with registers and
holding integer values the output is certainly integer as shown in (1).

r1: int * r2: int r3: int (1)
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Trust: safety shapes up in terms of trust. There are, de facto, various levels for trust which we
break them down in two classes for simplicity; those groups that are trusted and those that are not

so such that they are infusible regarding trust boundaries. All trusted software is composed of
reliable basic codes. Every software safety mechanisms hinge on some fail-safe codes.

Performance vs. Safety: it is pleasurable to have severe safety warranty and decent performance
although they almost conflict. Exerting safety mechanisms coming in delay is a burden against
fast-execution of programs which increases eventually execution time that is drop of performance
and the goal is establishing a compromise between the two points. Language-based security
techniques as we would describe later make efforts to improve both aspects.

4. TRADITIONAL APPROACHES TO APPLY SECURITY

Traditional methods to safety issue within computer systems include:

• Utilizing OS kernel as a reference monitor
• Cryptography
• Code instrumentation
• Trusted compilation

These mechanisms offer a constant amount of preliminary security policies benefitting from low
flexibility. In future we scrutinize them in detail.

1. Utilizing Operating System Kernel as Reference Monitor:  this method is the oldest
but the most exhaustive mechanism in use to guarantee security policies in software
systems and fulfils single actions on data and critical components of system through
operating system kernel. Kernel is an indispensible component of operating system code
retrieving vital components and data directly. The rest of programs are somehow
constrained in order to access these data and components such that kernel plays a role of
proxy interchanging messages for communication. In general, not only does kernel foil
suspicious codes execution in order to avoid a probable breakdown but supervises all
accesses and safety policies accomplishment. One of disadvantages of the approach may
originate from high-overload of context switch between various processes as they are
supposed to receive certification from kernel to retrieve their demanded data and
components.

2. Cryptography: by this method makes it possible to install safety at a sensible data
transmission level in an unreliable network and make use of a receiver as a verifier.
Power of cryptography methods is as much complex as hypotheses. Digital Encryption
Standards (DESs) are susceptible to violation by a sufficient amount of damaging codes.
Cryptography thus cannot guarantee downloaded codes from a network to be safe. It is
only able to provide a safe transmittal space for these codes through the Internet to avoid
intrusions and suspicious interference.

3. Code Instrumentation: Another approach practiced by operating system in some
systems to inspect safety level of a program from various aspects such as writing, reading
and programming jumps. Code instrumentation is a process through which machine code
of an executed program is changed and main action consequently could be overseen
during execution. Such changes occur in sequence of program machine code for two
reasons; first, behaviours of changed code and initial code equal. It suggests that initial
code did not violate safety policy and second, if violation by initial code occurs, changed
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code is immediately able to handle the situation by two options; either it recognizes
violation, gains control from system and terminates destructive process or prevents fatal
effects which are likely to affect the system soon.

For instance let’s suppose a program needs to be run on a machine with certain hardware
specifications. To do so let’s assume the program is loaded within a continuous space of
memory addresses [c2k, c2k + 2k - 1] where c and k are integer numbers. The program
then links to run and after execution and obtaining destination code, by altering values of
and jumping to another address space of memory for indirect addresses, the code in
question is ready to run.

Of conditions of a safe program is that after modifying direct addresses to indirect ones
the main action of new destination code does not permitted to change and must follow the
previous objectives. This drops under Software Faults Isolation (SFI). According to the
SFI, software components of a program remain within the same address spaces of
hardware. To guarantee this, a software reference monitor in order to individualize
components to logical address spaces is exerted. By this reference it is finally assured
every reading, writing and jumping take place within the same logical address space,
however its setback is due to high overload of checking which may compromise the
communication rate between components. Recent studies prove the improvements of
final performance by a combination of code instrumentation and language-based security
approaches [4], [6].

4. Trusted compiler: this method is fulfilled by a component known as trusted compiler.
By making virtue of codes limited access, compiler attempts to generate a code which is
trusted. There are two alternatives for operating system kernel to warrant reliability of
compiler.

If compiler is an independent component compiler must comply with a rule to ensure
kernel that the generated code is produced by the same trusted compiler. To do so, the
compiler somehow needs to mark the code and it is a type of signature. Having checked
the signature kernel makes sure of code correctness. The other alternative happens when
compiler is built into the kernel. But a drawback to the second approach is that when the
size of generated code by trusted compiler is not small enough it then takes up the space
of kernel. Hence according to traditional approach a trusted compiler fitted into the kernel
is applied, although the method carries its certain burdens.

5. LANGUAGE-BASED SECURITY

As mentioned before, the Internet is a susceptible area for destructive agents to penetrate into
computer systems influencing the security considerably. For instance the worm “Morris”
broadcasted on October in 1988 was an intruding worm through the Internet which affected 5
percent to 10 percent of 6000 machines connected to the network. “Morris” employed some
ulterior methods to access a host machine. “Love Bug’ and “Mellisa” were two famous viruses
utilizing the email services to be propagated. The reason why these viruses succeeded was that
they were unintentionally authenticated by the user in order to have desirable privileges for their
destructive codes. Plus, operating system kernel was totally unaware of proceedings.

Of preventive counteractions is to scan the computer system for viruses or suspicious codes, not
complete yet. One of important approaches on which we focus is to utilize code semantic and
behaviour in order to detect infections and is known as language-based security.
Times possible to prevent bad events include:
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• Before execution: code analysis, code rewriting, creating backup from user’s data
• During execution: execution with monitor and stopping malfunctions; detection of an

abnormality occurrence and counteraction, detection of malfunction occurrence and
recording of events.

• After execution: evocation of monitor and scan of Log. Schneider typically explains
language-based security as: “a set of techniques founded on theory and programming
languages such as definitions, types and optimization that are able to provide answers to
safety problems.” By such definition approaches like SFI and Security Automata SFI
Implementation (SASI) are treated as examples for language-based security.

In computer systems, compiler usually interprets a program in a high-level language. Assembler
of destination machine then issues Hex code of the program to the hardware to let it start.
Compiler obtains information about programs while compiling them. The information includes
variables values, types or specified information and may be analyzed and modified in order to
optimize produced destination code by compiler.

After successful compilation, extra information are mostly rallied which can provide information
about security of destination compiled code. For example in case the program is written in a safe
language before compilation filter of type check must be complete successfully. So codes about
security information should also be generated alongside destination code in order to run on the
hardware during compilation process. This information as a certificate is created before program
execution and it starts running before produced destination code execution to ensure security
policies of the specific convection is met. Such process is already shown in figure 1.

As explained, some of this extra information is generated during interpretation of a program about
security aspects of destination code. For instance when a program is written in a Type Safe
Language, after initiative examinations by compiler the program is inspected in term of type and
compiler hence guarantees safety of instruction memory. If code consumer does not access such
extra safety information his decision so as to securely run downloaded application from an
unknown source is easier to make.

Concept of language-based security is given to such extra information extracted from a program
written in a high-level language and while compiling this extra information package also called
certificate. During downloading applications from the Internet or any other unsafe tool, this
package of extra information is uploaded as well. Code consumer is able to evoke a verifier
program before running an application to confirm the certificate and code then run it.

One of consequential objectives of language-based security is that responsibility of verifying the
code of a program from user’s side is removed and transmitted to the code provider. It means
whenever a code provider intends to upload an application is supposed to supply a certain
certificate about safety aspects of code execution. So, the responsibility of code user to prove if
the code is safe is narrowed down to check safety of the code.

Code providers take advantage from various techniques to produce such certificate. Some of the
most important ones are:

1. Proof Carrying Code (PCP): produced certificate by the code provider is a first
order logic proof wherein a set of safe conditions to run code is supplied and user
checks their correctness on the downloaded application while running the code.

2. Type Assembly Language (TAL): certificate is a type reminder such that verifying
process on the user’s side inspects code structure in term of type.
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3. Efficient Code Certification (ECC): in this approach contains extra information
about destination code checking concept structures and code objectives according to
type theory information.

6. LANGUAGE-BASED SECURITY TECHNIQUES

A reference monitor is a program execution and prevents the program if it violates the safety
policies. Typical examples for reference monitor are operating systems (hardware monitor),
interpreters (software monitor) and firewalls. Most of safety mechanisms, today, employ
reference monitor. It should:

• Have accessibility to the information about what the program fulfills.
• Stop the program once it encounters violation.
• Save the code and program status from destructive interferences.
• Have low overload.
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Figure 1: Overview of Language-Based Security

In future we define a security policy and what type of safety policies are guaranteed by reference
monitors. Some of safety policies are warranted by reference monitors called safety properties.
Some of them are approximately irresolvable by reference monitors and do not accept the
program if it breaks the policies.

The hypothesis in reference monitor issue is that a reference monitor can access all computation
conditions. The reference monitor possesses indefinite states but it cannot predict future i.e. it
cannot forecast which program to terminate. Reference monitor only observes a sequence of
programs. Let’s assume we guarantee safety policy P by reference monitor wherein P represents a
unique sequence which is brought in equation (2).

P(s) = ∀ σ∈s, P (σ) (2)
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A set of executive sequence is a safety property if every member is individually determined by
the sequence and does not depend on other members. In some cases P must be continuous. On
this condition, some sections may not be established because monitor decision is made within a
limited time and we consequently follow through sequences execution. According to equation (3)
we see:∀σ, P (σ) ⇔ (∀i, P (σ∈ […i])) (3)

A prediction of P on a set of sequences simultaneously meeting conditions 2 and 3 is a safety
property. The rule is well-known as Schneider guaranteeing no malignant event would happen.
We can say, as a result, that a reference monitor does not affirm a safety policy which is not a
safety property. It proves, de facto, reference monitor is capable of guaranteeing every safety
policies.

Reference monitors are traditionally based on hardware and guaranteed by operating system and
its kernel. Such reference monitors were able to warrant safety properties of files manipulated by
system programs and these manipulations contain reading, writing, execution or adjustments to
list of files accessibility control; that is what changes each user is permitted to apply on each file.
Generally speaking, high-level objectives that reference monitor is able to satisfy is files and
sources accessibility and fullness.

Applying safety policies by reference monitor inside operating system might be useful for old
systems of which operating systems benefitted from low space and had a limited amount of
communication rate and contexts switch to have the program run. But because of pass of time,
operating systems complicacy and increase in their codes space in 1980 approaches were founded
in order to have authentication for managing such monitors off operating systems kernel
environment. On this condition, tasks like context switch codes, Transmission Lookaside Buffer
(TLB), trap management, interruptions and access to peripheral devices were dealt by kernel and
other tasks were considered as processes to run; actions such as system file, communication
protocols, paging algorithms. The reason is to augment flexibility and safety level.

Building blocks of language-based security are the program rewriting and analysis. By rewriting
it is guaranteed that programs do not perform unauthorized behaviours through a program
analysis in order not to let programs break the policies. In future we describe language-based
security mechanisms individually. These mechanisms are divided in two categories; first,
rewriting phase formed by in-lined reference monitor mechanisms and second, analysis phase
warranted by type safe programming. Later we expound another novel approach famous as
certifying compilers.

1. In-lined Reference Monitor (IRM): a mechanism fulfilled by operating system in
traditional approaches to supervise programs flawless execution and confirmation of
objective safety policies is that reference monitor and objective system are located in
distinct address space. Alternative approach is an in-lined reference monitor; a similar
task which is performed by SFI. This component fulfills safety policy for objective
system by stopping reading, writing and jumps in the memory outside a predefined area
[3]. One of methods thus, is the merge of the reference monitor with objective
application. In-lined reference monitor is specified by definitions below:

• Security events: action to be performed by reference monitor.
• Security status: information to be stored during a safety event occurrence

according to which a permission to progress is issued.
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• Security updating: sections of the program running in response to safety events
and updating safety status.

While loading the program, program rewriter IRM generates a verified application having
its fullness and safety confirmed in which there is no safety policy to be broken. SASI is
the first generation of IRM proved by researches to be an approach guaranteeing
policies in question. The first generation is programmed in Assembly80x86 and the
second generation is programmed in Java [2]. SASI x86 that is compatible with
Assembly 80x86 is the graphical output of gcc compiler. The destination code generated
meets the two conditions below:

• The program behavior never changes by adding NOPs.
• Variables and addresses of target branch marked with some tags by gcc compiler

are matched during compilation.

So the first version is comprehensively employed in order to save the program memory
data. In the second version of IRM, JVML SASI, the programmed is preserved in term of
type safety. JVML instructions provide information about the program classes, instances,
methods, threads and types. Such information can be utilized by JVML SASI to supply
safety policies in applications [5]. Rewriting components in IRM mechanism generate a
verifying code with related destination code by this extra information [10].

2. Type System: the main objective is to prevent error occurrence during the execution.
Such errors are identified by a type checker. The importance of this case is that a high-
level program certainly does have many variables. If these variables of a programming
language are within a specific area we technically say the language is a type safe. Let’s
assume variable x in Java is defined as a Boolean and whenever it is initiated False the
result is !X(not x) that is True. If variables are under a condition such that their values are
within an undefined area we say the language is not type safe. In such languages we do
not meet types but a global type including all possible types. An action is fulfilled by
arguments and output may contain an optional constant, an error, an exception or an
uncertain effect [8].

Type system is a component of type safe languages holding all types of variables and
type of all expressions are computed during execution. Type systems are employed in
order to decide a program is well-formed. Type safe languages are explicitly known as
typical if types are parts of syntax otherwise implicit type.

Type safe languages such as ML and Java guarantee program actions to be applied only
on proper values. They also warrant some safety properties such as memory and control
security. Type systems supporting type abstract permit programmers to define new types
and consequently fulfill actions by means of them. If an unauthorized code tends to
perform inappropriate actions on improper types it would be thwarted by type checker.
The keynote idea lies in here that checking during program execution on the user’s side
must be triggered in generator section while programming. Recent advances in designing
type systems make definition of useful safety properties possible and facilitate programs
execution on the user’s side by drop of type checking while programming. Such
mechanism gives rise to memory safety policies accomplishment and flow control.

3. Certifying Compiler: the main blind drawback of type-based approaches to safety
establishment is that they suppose some hypotheses about high-level language. The
program must be written in a high-level language which is well-behaved in terms of type
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and action concept. Moreover, the programmer is supposed to write codes in a high-level
language and end user should properly implement the program from type and action
concept aspect which causes lower flexibility. A Certifying compiler is a compiler that
the data given to it guarantees a safety policy, generates a certificate as well as destination
code which is checkable by machine i.e. it checks policies in question [9].

For instance, a company generates a Java code while running programs which some extra
information about code safety to the form of Java Byte Code is produced. Certifying
compilers are the most significant tool to run safe programs since they follow through
without considering computation bases. To examine if the output code of a certifying
compiler commit some policies, an automatic certificate checker is employed. Such
checker examines the output of certifying compiler if the destination code holds
properties included in the certificate. For example, JVML examines such code during
execution a Java program and before execution of main code to check if the program is
type safe. An instance of such compilers development is PCC.

7. CASE STUDY ON SAFE AND UNSAFE LANGUAGE

As mentioned, a language is type-safe if the only operations that can be performed on data in the
language are those sanctioned by the type of the data." So, we can deduce that C++ is not type-
safe according to this definition at least because a developer may cast an instance of some class to
another and overwrite the instance's data using the "illegal" cast and its unintended methods and
operators.

Java and C# were designed to be type-safe. An illegal cast will be caught at compile time if it can
be shown that the cast is illegal; or an exception will be thrown at runtime if the object cannot be
cast to the new type. Type safety is therefore important because it not only forces a developer to
write more correct code, but also helps a system become more secure from unscrupulous
individuals. However, some, including Saraswat, have shown that not even Java is completely
type-safe in his abstract.

Java comprises a language-based mechanisms designed to protect against malicious applets. The
Java runtime environment contains a byte code verifier that is supported to ensure the basic
properties of memory, control flow, and type safety. There is also a trusted security manager that
enforces higher-level safety policies such as restricted disk I/O [7].

8. CONCLUSIONS

Security in computer systems holds an importance stand. In traditional approaches computer
systems safety is founded on two principles of minimal access privilege and computing base. In
such approaches the safety is warranted by operating systems and kernels which the kernel acts as
a proxy for other processes running on the system. Because of technology advances, complicacy
of operating systems in terms of tasks and increase in kernel codes for supporting properties such
as graphic cards and distributed file system, new approaches install safety which are proved to be
high performance like safety establishment by using programming techniques. Such techniques
drop under three main categories: in-lined reference monitor, type system and certifying
compilers which are described separately.
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