There is a newer version of this record available.

Dataset Open Access

Data from: Predictive mapping of the global power system using open data

Arderne, Christopher; NIcolas, Claire; Zorn, Conrad; Koks, Elco E.


JSON-LD (schema.org) Export

{
  "description": "<p>Four primary global data outputs from the research:</p>\n\n<ul>\n\t<li><strong>hv.gpkg:</strong> Dump of OpenStreetMap grid data, slightly cleaned and tagged. (C) OpenStreetMap contributors.</li>\n\t<li><strong>targets.tif:</strong> Binary aster showing locations predicted to be connected to distribution grid.</li>\n\t<li><strong>mv.gpkg:</strong> Vectorized predicted distribution line network.</li>\n\t<li><strong>lv.tif:</strong> Raster of predicted low-voltage infrastructure in kilometres per cell.</li>\n</ul>\n\n<p>This data was created with code in the following three repositories:</p>\n\n<ul>\n\t<li>https://github.com/carderne/gridfinder</li>\n\t<li>https://github.com/carderne/energy-infra</li>\n\t<li>https://github.com/carderne/accessestimator</li>\n</ul>\n\n<p>Full steps to reproduce are contained in this file:</p>\n\n<ul>\n\t<li>https://github.com/carderne/energy-infra/blob/master/README.md</li>\n</ul>\n\n<p>The data can be visualized at the following location:</p>\n\n<ul>\n\t<li>https://gridfinder.org</li>\n</ul>", 
  "license": "http://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "World Bank Group", 
      "@id": "https://orcid.org/0000-0002-7904-2216", 
      "@type": "Person", 
      "name": "Arderne, Christopher"
    }, 
    {
      "affiliation": "World Bank Group", 
      "@type": "Person", 
      "name": "NIcolas, Claire"
    }, 
    {
      "affiliation": "University of Oxford", 
      "@type": "Person", 
      "name": "Zorn, Conrad"
    }, 
    {
      "affiliation": "University of Oxford", 
      "@type": "Person", 
      "name": "Koks, Elco E."
    }
  ], 
  "url": "https://zenodo.org/record/3369107", 
  "datePublished": "2019-08-15", 
  "version": "1.0.0", 
  "keywords": [
    "electricity", 
    "infrastructure", 
    "power"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/d17e8382-4a0f-4195-ba66-60b96c051040/hv.gpkg", 
      "encodingFormat": "gpkg", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/d17e8382-4a0f-4195-ba66-60b96c051040/lv.tif", 
      "encodingFormat": "tif", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/d17e8382-4a0f-4195-ba66-60b96c051040/mv.gpkg", 
      "encodingFormat": "gpkg", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/d17e8382-4a0f-4195-ba66-60b96c051040/targets.tif", 
      "encodingFormat": "tif", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.3369107", 
  "@id": "https://doi.org/10.5281/zenodo.3369107", 
  "@type": "Dataset", 
  "name": "Data from: Predictive mapping of the global power system using open data"
}
975
817
views
downloads
All versions This version
Views 97592
Downloads 81735
Data volume 358.3 GB12.0 GB
Unique views 79185
Unique downloads 43820

Share

Cite as