<u>31<sup>st</sup> December 2018. Vol.96. No 24</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org



## AN EFFICIENT HYBRID MODEL FOR RELIABLE CLASSIFICATION OF HIGH DIMENSIONAL DATA USING K-MEANS CLUSTERING AND BAGGING ENSEMBLE CLASSIFIER

## <sup>1</sup>HAYDER K. FATLAWI <sup>2</sup>ABBAS F. H. ALHARAN<sup>3</sup>NABEEL SALIH ALI\*

<sup>1,3</sup> Information Technology Research and Development Center, University of Kufa, Iraq. <sup>2</sup>Computer Department, College of Education for Girls, University of Kufa, Iraq.

<sup>1</sup>Hayder.fatlawi@uokufa.edu.iq, <sup>2</sup>Abbasf.abood@uokufa.edu.iq, <sup>3</sup>Nabeel@uokufa.ed.iq

#### ABSTRACT

Data mining is playing a significant role in the digital era, and there are traditional techniques to classify, cluster the large data, etc. Today, the variety of data and its size has grown increasingly. Preprocessing of the data impose and need high computational resources due to raising the number of data attributes. Thus, attributes reduction deem a vital and significant part of the data pre-processing due to its ability to reduce the required computational resources. In this study, a hybrid model is proposed to eliminate irrelevant attributes with N number of goodness evaluation metrics by using K-Means Clustering and Bagging Ensemble Classifier. The proposed model was implanted with five different datasets. The model can minimize the number of the attributes up to (70%). Hence, the results with reduction can be increased the efficiency of the classification performance from the computation time standpoint.

Keywords: k-means clustering, Bagging classification, Attributes reduction.

## **1. INTRODUCTION**

Data mining concerns with discovering the hidden patterns and predicting unknown values in a large amount of data [1, 2]. Techniques of data mining have been increased attention by researchers due to raises the need for large and complex data analysis [3]. According to digital universe statistics, the approximate size of the data in 2005 was 130 Exabytes and is expected to reach 40,000 Exabytes, with increasing factor 300[4]. The high dimensionality of data (i.e., the large number of attributes in data) represents a significant challenge faces data mining techniques, whereas, the increasing of attributes lead to dramatically increase in the required computing resourced [5].

On the other hands, most solutions to this challenge focused on reducing the attributes by choosing the most correlated attributes with the target of classification (or removing the most irrelative attributes) [1,6,7]. The importance of an attribute can be determined using some statistical metrics, and the selection of the most suitable parameter represents another challenge [1, 2, 6]. The difficulty of this challenge increases when several metrics are used.

In the current work, a hybrid and multi-stage model is proposed to solve the mentioned challenges due to the ability to deal with any number of metrics to minimize the attributes. The model uses a Kmeans clustering algorithm to discover the strength patterns of the attributes. Then, reduced the data is classified using bagging ensemble techniques to improve the accuracy of the classification.

## **2. LITERATURE REVIEW**

Attribute selection is a method that used to eliminate undesirable and recurrent attributes from data during processing. Overlooking the unmeaningful attributes from the enormous database minimizes the complexity and time of computation, and maximizes the quality of learning [8]. Two main categories of attribute selection methods are used which are supervised and unsupervised [9]. Diverse attempts by authors are introduced unsupervised selection methods to eliminate undesirable and recurrent data attributes.

A hybrid approach of clustering using K-means and classification using the RBF function of SVM is presented by [10] to detect intrusions and attacks in the network. K-means algorithm is used for selecting the data attributes as a cluster. The proposed approach proved decreased the complexity of <u>31<sup>st</sup> December 2018. Vol.96. No 24</u> © 2005 – ongoing JATIT & LLS



<u>www.jatit.org</u>



classification while both accuracy and detection of four categories are increased when implemented the proposed method in the KDD CUP 99 dataset.

Besides, an attributes selection method introduced by [11]. The method combining multivariate filter model with ant colony optimization (ACO) algorithm. The selection method was produced precise results after tested via new heuristic measurement.

On the other hands, in the field of text mining, as stated in [12], both clustering and classification based selection attributes have experimented. The authors applied hierarchical clustering (hClust) and k-means clustering with various lengths (5%), (10%), (15%), (20%) and (50%). Using a genetic algorithm of the selected attributes. Two measured are used with results which are average accuracy and F-measure to evaluate the performance of hClust and compare with k-means. The results found the performance of the hClust better than K-means when the length of attributes equal to or greater than (15%).

A hybridization approach of SVR, SOFM, and filter based attribute selection have been introduced by [13] to improve the accuracy of prediction for next day price index. SVR model is constructed for each cluster generated by SOFM according to select attributes. The result proved that the proposed approach better than using only SVR with and without attribute selection.

Also, an unsupervised method for attribute selection is presented by [14]. This method is based on the salient attribute selection by discovering the nearest neighbor and farthest neighbor (FSNF) to be held for clustering (k-means and SOM). Furthermore, filter-based and wrapper-based selection methods are discussed and compared with the proposed method to demonstrate the results. Whereas the filter-based method includes three models (Max-Rel, Var. and IBNF); whilst, the wrapper-based method k-means clustering algorithm is used in the training side.

As alongside with [15] which authors proposed another unsupervised attribute selection method that depends on availing the self-representation capability of attributes. Moreover, the representative attributes matric is influenced by itself to construct regularized attributes. The discordant is reduced by using L1, 2-norm, where the selected attributes are the most affection to construct other attributes. The presented method is evaluated by three criteria classification performance, clustering performance, and the redundancy.

Likewise, [16] proposed an approach to predict early failures detection in the air pressure system of the trunks (Scania) to reduce the cost of the maintenance process. The conducted approach used the random forest to predict the classes of features (created as histograms), and it calculates the value of each class. Data (includes 60000 rows and 171 columns) has been used for training and evaluating the performance of the discussed approach. The results prove that the product approach has reduced the main cost around (0.6) compared to the traditional case (without approach).

Furthermore, Auto-Associative Multivariate Regression Trees (AAMRT) approach is presented by [17] for unsupervised feature selection to preserve information and reduce data. The AAMRT based on multivariate regression tree (MRT) but the original variables in AAMRT are utilized as response and explanatory variables. Besides, the approach described the MRT and Classification and Regression Trees (CART). Several experiments are applied to different datasets such as Synthetic, Viruses, Flavour, viruses and Bacteria to evaluate The AAMRT approach. The proposed method is effective in selecting and maintaining the important features and expelling the frequent and unimportant features based on their evaluation results.

Moreover, fast feature selection method based on clustering (FAST) is proposed by [18]. The proposed method includes two steps respectively, First: using a graph-theoretic clustering method to divide the attributes into clusters. Second: create the subset of attributes from collecting the most related attributes to a particular class. The Fast method has experimented on 35 datasets with different domains to measure its performance. From the feature selection effectiveness end, FAST results in the best ratio (1.18%) of attribute selection compared with five algorithms namely: FCBF, CFS, Relief, Consist, and FOCUS-SF. Also, the FAST is the faster in running with time 3573 millisecond. Besides, the outcomes of the experiment that FAST produces smaller subsets and improves the accuracy of other classifiers such as Naive Bayes, C4.5, IB1, and RIPPER.

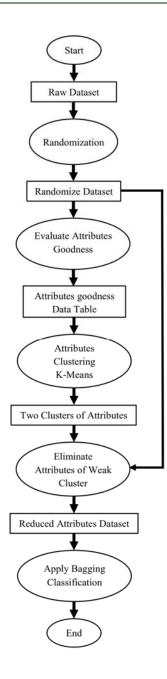
## **3. METHODOLOGY**

Several stages are conducted of the proposed model after randomizing all the raw data to ensure that no date entry patterns remain. These phases include attributes evaluation, k-means clustering, and bagging classification. As we can see in Figure 1 which explains the procedures steps of the hybrid model. © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>





measurement could be ranked the attributes differently from the other measure which represents another challenge to be solved.

In this step, k metrics can be applied to the raw data to evaluate the quality of the attributes. Typical and straightforward rule classification method is used to perform the measurement. With N number of attributes, the result of this step is  $N \times K$  matrix contains the quality of every attribute according to all metrics, such that element i in the matrix represents the goodness of attribute N\_i using K\_i criterion. This matrix would be used as an input for the next step.

## 3.2 Attributes Clustering using K-means

Mostly, clustering techniques can be divided into three general types: partitioning, hierarchical, and density-based methods [1,2]. K-means is considered a partitioning method which performed data clustering by produces K partition, and each partition will be a cluster. It begins with selecting random data points for initial partitioning, subsequently; it applies an iterative process to improve the partitioning by changing the position of data points from one cluster to another. The best partitioning is where the data points in a cluster are closer to each other while data points from different clusters are far [2,19]. Furthermore, from the computational time view, k-means could have better performance with a high number of attributes in comparison with hierarchical clustering. In this step, the K-means clustering technique is applied to discover the strength patterns of attributes. The clustering is performed for the data matrix that produced from the previous level, and two clusters are created in the result.

## **3.1 Attributes Goodness Evaluation**

One of the most critical decisions that should be taken during classification model growing is which attribute is most suitable for splitting data? [2]. Also, the question about which is the most suitable splitting value takes a significant role in this process? [1]. Wherefore, the reduction of many attributes leads to an effective decreasing in computing recourses [5]. For more confident elimination of attributes, the evaluation of attributes quality should depend on several metrics. Each ISSN: 1992-8645

<u>www.jatit.org</u>



## 3.3 Irrelevant Attributes Removal

According to the distribution of the attributes into two clusters, the decision will be taken to remove the

Figure 1: Multi-Stage Methodology of the Proposed Model.

subset of attributes that belong to the weak cluster. The weakness of the cluster is detected by comparing the values of the center elements of the two clusters and the cluster with the lowest values in its center that will be considered the weak cluster. Thereby, all attributes in the weak cluster will be recovered due to the irrelevant to the target in the next classification process.

## **3.4 Bagging Classification**

Instead of creating one single classification model as a result of the training process, an ensemble classifier is created based on the bagging method [2, 6, 21]. Given the reduced dataset DS which contains m attributes and n rows the training include k iterations and for iteration (i $\leq$ =k), DSi is a randomly sampled subset from DS with replacement. The training process on DSi produces a classification model CMi that could be applied to classify unseen data rows. The ensemble classifier collects the votes from each single classification model CMi and assigns the class with the highest number of votes to the hidden data [20- 24].

## 4. IMPLEMENTATION AND RESULTS

The implementation includes applying all steps of the proposed model with a sundry and different dataset. Evaluation of classifier's performance is performed by using five accuracy metrics inanition with computational time metric.

## 4.1 Description of Datasets

In the current study, five different datasets from a variety and diverse fields are used to apply and evaluate the proposed model as follow: (1) bank marketing dataset which depends on phone calls, it contains (17) attributes and (45211) data rows [25]. (2) Diabetes dataset contains clinical care data of 130 US hospitals for ten years (1999-2008), there are (50) attributes and (100000) data rows including in this dataset [26]. (3) MoCap hand postures contain data of 12 users with five different types of hand postures which collected using unlabeled markers, the total number of data rows of this dataset is (78095) and (38) attributes [27, 28]. (4) KDD Cup dataset of the third international competition of knowledge discovery and data mining tools, its task was to develop a network intrusion detector to

distinguish between intrusions and standard connections. It contains (42) attributes and (400000) data rows [29]. (5) APS Failure at Scania Trucks includes (60000) data rows and (171) attributes; also it has two classes: positive class represents failures APS system component and negative level for failures for not related APS components [30].

## 4.2 Applying Attributes Goodness Evaluation

One of the most critical issues during the growth of a classifier is evaluating of attribute's importance [2, 6]. In each division of the data process, the most relevant attribute with the target of the classification must be chosen. Statistical measures could be used for this task such as Information Gain and Gain Ratio [1, 2]. The best attribute is such an attribute that minimizes the impurity of data. Impurity could be measured using statistical randomness measurement such us Entropy. Therefore, Information Gain is the gain of splitting operation indicates by the impurity of the class Y before and after splitting [2]. The equation (1) explains the calculation of information gain as follow,

## Info. Gain = $InG(P) - \sum_{i=1}^{cn} \frac{ND(node i)}{ND} InG(node i)$ (.........(1)

where InG (P) is the parent node's information gain before splitting, cn is the number of attribute's values, ND is the number of data row in the parent node, ND (node i) is the number of data row in node I, InG (node i) is the information gain of node i. The impurity of data is measured by Information Gain depending on the entropy which tends to select attributes with distinct high values. A high number of values led to generate more branches in each iteration. As a result of that; the number of data rows would be decreased which affects the prediction reliability. Gain Ratio represents an improvement to overcome this problem which weighted the information gain by the number of child nodes of each branch by as shown in the equation (2),

$$Gain Ratio = \frac{Info.Gain}{-\sum_{i=1}^{cn} P(node i) \log 2 P(node i)} \dots \dots \dots \dots (2)$$

Where P (node i) is the fraction of data instances in the node i to the number of data instances in the parent node. Another three metrics are used in the implementation as follow: OneR which evaluates the goodness of an attribute by using the OneR classifier [31]. Relief Attribute Evaluator: Evaluates the goodness of an attribute by making iterative sampling a data row and considering the value of the given attribute for the nearest data row of the same

#### Journal of Theoretical and Applied Information Technology 31st December 2018. Vol.96. No 24

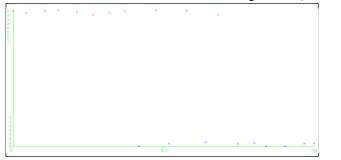
© 2005 – ongoing JATIT & LLS

| ISSN: 1992-8645 | <u>www.jatit.org</u> | E-ISSN: 1817-3195 |
|-----------------|----------------------|-------------------|

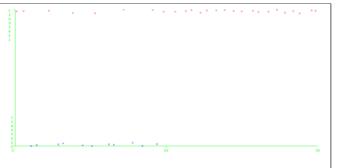
and different class [32-35]. Symmetrical Uncertainty Attribute Evaluator: Evaluates the goodness of an attribute by measuring the symmetrical uncertainty for the class [36-37]. The result of applying those five mercies on five data sets is shown in Tables (1-5) in the appendix section respectively.

## 4.3 Apply K-means Clustering on Datasets

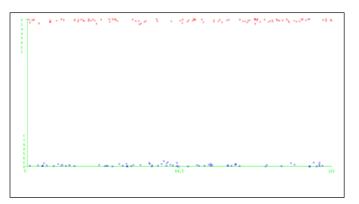
For discovering the strength of the attributes of the five datasets, the k-means algorithm (which



(A) Clustering of Bank Marketing dataset attributes



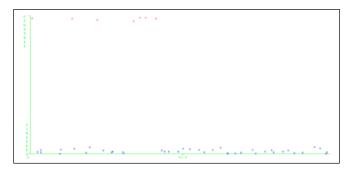
(C) Clustering of MoCap Hand Postures dataset attributes



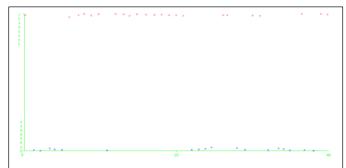
(E) Clustering of APS Failure dataset attributes

Figure 2: Clustering of attributes of five datasets

explained in Section 3.2) is applied to the data matrix that resulted from the previous step. For each dataset K-mean split the attributes between two clusters: weak and strong, the evaluation of cluster's centroid of five datasets are shown in the Table 1 and Figure 2 present the clustering of attributes of the five datasets consecutively.



(B) Clustering of Diabetes dataset attributes



(D) Clustering of KDD Cup 1999 dataset attributes

E-ISSN: 1817-3195

ISSN: 1992-8645

<u>www.jatit.org</u>

| Dataset Name           | Original<br>Number of<br>attributes | Reduced Number of attributes | Ratio of attributes<br>Reduction |
|------------------------|-------------------------------------|------------------------------|----------------------------------|
| Bank Marketing         | 20                                  | 8                            | 60%                              |
| Diabetes               | 48                                  | 41                           | 15%                              |
| MoCap Hand<br>Postures | 37                                  | 11                           | 70%                              |
| KDD cup 1999           | 41                                  | 18                           | 56%                              |
| APS Failure            | 170                                 | 71                           | 58%                              |

 Table 1:
 Evaluation of Cluster's centroid of five datasets

## 4.4 Apply Irrelevant Attributes Removal

Each attribute belongs to weak clusters from the previous step is removed resulting in a significant

#### Table 2: Ratio of Attributes Reduction in five datasets

## 4.5 Apply Bagging Classification

Bagging classification can be characterized by

reduction in the dimensionality of datasets. Table 2 clarifies the number of the attribute before and after applying the removal and the ration of attribute reduction.

provides the efficiency of bagging classification, especially with a big dataset. The improving of computational time on five datasets is shown in

| Dataset<br>Name            |              |              | Diał         | oetes     | MoCap Hand<br>Postures |           | KDD cup 1999 |           | APS Failure |           |
|----------------------------|--------------|--------------|--------------|-----------|------------------------|-----------|--------------|-----------|-------------|-----------|
| Cluster No                 | Cluster<br>0 | Cluster<br>1 | Cluster<br>0 | Cluster 1 | Cluster<br>0           | Cluster 1 | Cluster 0    | Cluster 1 | Cluster 0   | Cluster 1 |
| Gain Ratio                 | 0.2934       | 0.045        | 0.1217       | 0.1164    | 0.8839                 | 0.2416    | 0.623        | 0.2631    | 0.1662      | 0.0942    |
| Info Gain                  | 0.7587       | 0.1019       | 0.041        | 0.6544    | 0.8088                 | 0.2026    | 0.6016       | 0.0453    | 0.7489      | 0.1975    |
| OneR                       | 0.7587       | 0.1019       | 0.1869       | 0.2907    | 0.7328                 | 0.595     | 0.5471       | 0.0045    | 0.324       | 0.2723    |
| Relief                     | 0.0629       | 0.3243       | 0.0903       | 0.6376    | 0.1881                 | 0.1664    | 0.4464       | 0.0274    | 0.1489      | 0.0796    |
| Symmetrical<br>Uncertainty | 0.0666       | 0.0118       | 0.0014       | 0.0123    | 0.098                  | 0.0261    | 0.5576       | 0.0531    | 0.0737      | 0.022     |

creating the number of sub-dataset from the original dataset and applying classification processes in each one which represents a heavy computational time task. Thereby, the reduction of attributes number Figure 3. Table 3 and Figures (4-8) represent and illustrate the evaluation of bagging classification accuracy before and after applying the proposed model on five datasets.

#### www.jatit.org

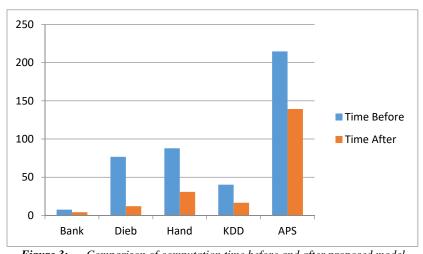
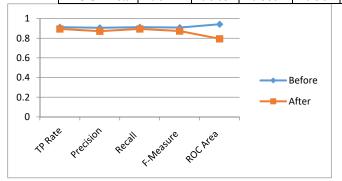


Figure 3: Comparison of computation time before and after proposed model

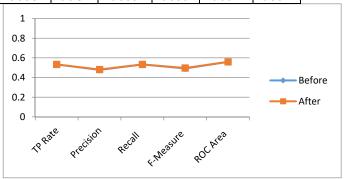
Table 3: Evaluation the accuracy before and after applying proposed model in five datasets

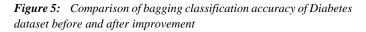
| Dataset<br>Name | Bank<br>Marketing |       | Diab   | etes  | MoCap<br>Posti |       | KDD cu | ip 1999 | APS F  | ailure |
|-----------------|-------------------|-------|--------|-------|----------------|-------|--------|---------|--------|--------|
|                 | Before            | After | Before | After | Before         | After | Before | After   | Before | After  |
| TP Rate         | 0.912             | 0.905 | 0.533  | 0.534 | 0.942          | 0.891 | 0.999  | 0.999   | 0.966  | 0.967  |
| Precision       | 0.894             | 0.871 | 0.478  | 0.482 | 0.942          | 0.891 | 0.999  | 0.999   | 0.965  | 0.967  |
| Recall          | 0.912             | 0.905 | 0.533  | 0.534 | 0.942          | 0.891 | 0.999  | 0.999   | 0.966  | 0.967  |
| F-Measure       | 0.894             | 0.871 | 0.492  | 0.497 | 0.942          | 0.891 | 0.999  | 0.999   | 0.965  | 0.967  |
| <b>ROC</b> Area | 0.912             | 0.905 | 0.559  | 0.56  | 0.995          | 0.984 | 0.999  | 0.999   | 0.992  | 0.992  |



ISSN: 1992-8645

*Figure 4:* Comparison of bagging classification accuracy of Bank Marketing dataset before and after improvement

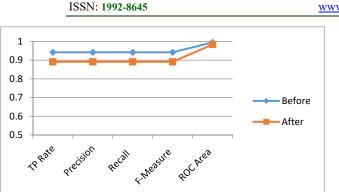




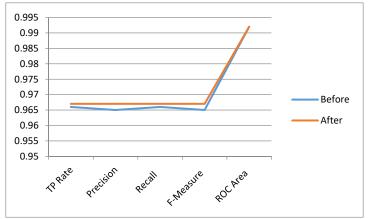
## Journal of Theoretical and Applied Information Technology

<u>31<sup>st</sup> December 2018. Vol.96. No 24</u> © 2005 – ongoing JATIT & LLS

www.jatit.org



*Figure6:* Comparison of bagging classification accuracy of MoCap Hand Postures dataset before and after improvement



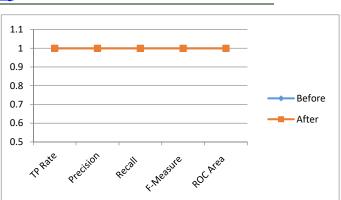
*Figure8:* Comparison of bagging classification accuracy of APS Failure dataset before and after improvement

The performance of the classifier is measured by five common metrics as follow: (1) True Positive (TP), which related to the number of the positive examples that correctly predicted (2) Precision and (3) Recall which used widely in applications where the value of the successful detection of one of the classes is more significant than the detection of the other classes. Precision measures the fraction of the data rows that belong to the positive group, and the classifier has declared as a positive class. Recall calculates the fraction of positive examples that correctly predicted by the classifier [1].

Building a model that maximizes both precision and recall is the key challenge of the classification algorithms. Precision and recall can be summarized into another metric known as the (4) F1 measure as shown in equation (3).

#### F1 = 2\* (Recall\* Precision) / (Recall+ Precision) .....(3)

(5) A receiver operating characteristic (ROC) curve is a graphical approach for displaying the tradeoff between true positive rate and false positive rate of a classifier. In a ROC curve, the true positive



E-ISSN: 1817-3195

*Figure7:* Comparison of bagging classification accuracy of KDD cup 1999 dataset before and after improvement

rate (TPR) is plotted along the y-axis and the false positive rate (FPR) is shown on the x-axis [1, 2].

#### **5. RESULTS DISCUSSIONS**

To shed light on the proposed hybrid model results and their significant findings among other methods and approaches that have been proposed before to improve the classifications performance and its reliability, accuracy, effectiveness, and efficiency for high dimensional data. The proposed method is compared with some prior works regarding classification accuracy and consumed time. Table 4 shows that the proposed method has better classification accuracy and time for bank marketing dataset with 90.5 and 4.23 respectively.

**Table 4:** classification accuracy and time consumptionfor Bank marketing

| work Classifier |       | Accuracy | Time (s) |
|-----------------|-------|----------|----------|
| 2015 [38]       | MLPNN | 88.63    | 1767.75  |

## Journal of Theoretical and Applied Information Technology

31st December 2018. Vol.96. No 24 © 2005 – ongoing JATIT & LLS

|                |             |      |      |                    |                                                  | 10111       |
|----------------|-------------|------|------|--------------------|--------------------------------------------------|-------------|
| ISSN: 1992-864 | 5           |      | www  | .jatit.org         | E-ISSN                                           | : 1817-3195 |
| 2016 [39]      | LT-<br>SVDD | 90   | 4.96 | with any number of | icient due to its abili<br>metrics to reduce the | attributes  |
| Proposed       | Bagging     | 90.5 | 4.23 | U 1                | to (70%) (See Tables<br>ns, we intend to ap      | · //        |

Table 5 shows that applying the proposed method on KDD Cup 1999 dataset is superior on five works regarding classification with accuracy 99.9 and it consumes 16.6 seconds compared with the work of Shah and Trivedi, who use backpropagation neural network algorithm for classification.

model

Table 5: classification accuracy and time consumption for KDD Cup 1999

| work      | Classifier | Accuracy    | Time(s) |
|-----------|------------|-------------|---------|
| 2015 [40] | BPNN       | 96.7%       | 1548    |
| 2016 [41] | LSTM-      | 96.93       |         |
| 2010 [41] | RNN        | 90.95       | -       |
|           | Multi-     |             |         |
|           | level      |             |         |
| 2017 [42] | hybrid     | vbrid 95.75 |         |
|           | SVM and    |             |         |
|           | ELM.       |             |         |
| 2018[43]  | REPTree    | 99.67       |         |
| Proposed  | Bagging    | 99.9        | 16.6    |
| model     | Dagging    | <i></i>     | 10.0    |

Table 6 demonstrate that the proposed method has an accuracy better than the work of Schlag et al. for APS Failure dataset, but the consumption time is a little more.

Table 6: classification accuracy and time consumption for APS Failure

| work              | Classifier | Accuracy | Time(s) |
|-------------------|------------|----------|---------|
| 2018 [44]         | LPSVM      | 95       | 110.85  |
| Proposed<br>model | Bagging    | 96.7     | 139.36  |

## 6. CONCLUSIONS AND FUTURE WORK

In this article, a multi-phase model is proposed to eliminate irrelevant attributes with N number of goodness evaluation metrics via using K-Means Clustering and Bagging Ensemble Classifier. The hybrid model used the K-means clustering algorithm to discover the strength patterns of the attributes as well minimized data is classified using bagging ensemble techniques to improve the accuracy of the classification (see Tables (1-5) in the appendix). The model is evaluated with five different datasets, and

ability to deal e the attributes ables (4-6)). In the future directions, we intend to apply more advanced clustering techniques instead of k-means as well, applying soft computing techniques for choosing a suitable number of clusters.

## **REFERENCES:**

- [1] Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 2011.
- [2] Tan, Pang-Ning. Introduction to data mining. Pearson Education India, 2007.
- [3] Amato, Giuseppe, et al. "How Data Mining and Machine Learning Evolved from Relational Data Base to Data Science." A Comprehensive Guide through the Italian Database Research over the Last 25 Years. Springer, Cham, 2018. 287-306.
- [4] Gantz, John, and David Reinsel. "The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east." IDC iView: IDC Analyze the future 2007.2012 (2012): 1-16.
- [5] Zhu, Pengfei, et al. "Unsupervised feature selection by regularized self-representation." Pattern Recognition 48.2 (2015): 438-446.
- [6] Witten, Ian H., et al. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016.
- [7] Sheikhpour, Razieh, et al. "A survey on semisupervised feature selection methods." Pattern Recognition 64 (2017): 141-158.
- [8] Chen, C.-H. (2015). Feature selection for clustering using instance-based learning by exploring the nearest and farthest neighbors. Information Sciences, 318, 14-27.
- [9] Gondek, C., Hafner, D., & Sampson, O. R. (2016). Prediction of failures in the air pressure system of scania trucks using a random forest and feature engineering. Paper presented at the International Symposium on Intelligent Data Analysis.
- [10] Hong, S.-S., Lee, W., & Han, M.-M. (2015). The feature selection method based on genetic algorithm for efficient of text clustering and text classification. International Journal of Advances in Soft Computing & Its Applications, 7(1).
- [11] Huang, C.-L., & Tsai, C.-Y. (2009). A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Systems with Applications, 36(2), 1529-1539.

## Journal of Theoretical and Applied Information Technology

<u>31<sup>st</sup> December 2018. Vol.96. No 24</u> © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

www.jatit.org

8388

- [12] Questier, F., Put, R., Coomans, D., Walczak, B., & Vander Heyden, Y. (2005). The use of CART and multivariate regression trees for supervised and unsupervised feature selection. Chemometrics and Intelligent Laboratory Systems, 76(1), 45-54.
- [13] Ravale, U., Marathe, N., & Padiya, P. (2015). Feature selection based hybrid anomaly intrusion detection system using K means and RBF kernel function. Procedia Computer Science, 45, 428-435.
- [14] Shang, R., Zhang, Z., Jiao, L., Liu, C., & Li, Y. (2016). Self-representation based dual-graph regularized feature selection clustering. Neurocomputing, 171, 1242-1253.
- [15] Song, Q., Ni, J., & Wang, G. (2013). A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Transactions on Knowledge and Data Engineering, 25(1), 1-14.
- [16] Tabakhi, S., & Moradi, P. (2015). Relevance– redundancy feature selection based on ant colony optimization. Pattern recognition, 48(9), 2798-2811.
- [17] Zhao, Z., He, X., Cai, D., Zhang, L., Ng, W., & Zhuang, Y. (2016). Graph regularized feature selection with data reconstruction. IEEE Transactions on Knowledge and Data Engineering, 28(3), 689-700.
- [18] Zhu, P., Zuo, W., Zhang, L., Hu, Q., & Shiu, S. C. (2015). Unsupervised feature selection by regularized self-representation. Pattern recognition, 48(2), 438-446.
- [19] Olson, David L. Descriptive data mining. Springer Singapore, 2017.
- [20] Rokach, Lior, and Oded Z. Maimon. Data mining with decision trees: theory and applications. Vol. 69. World scientific, 2008.
- [21] Seni, Giovanni, and John F. Elder. "Ensemble methods in data mining: improving accuracy through combining predictions." Synthesis Lectures on Data Mining and Knowledge Discovery 2.1 (2010): 1-126.
- [22] Nisbet, Robert, John Elder, and Gary Miner. Handbook of statistical analysis and data mining applications. Academic Press, 2009.
- [23] Altman, Naomi, and Martin Krzywinski. "Points of Significance: Ensemble methods: bagging and random forests." (2017): 933.
- [24] Catal, Cagatay, and Mehmet Nangir. "A sentiment classification model based on multiple classifiers." Applied Soft Computing 50 (2017): 135-141.
- [25] Moro, Sérgio, Paulo Cortez, and Paulo Rita. "A data-driven approach to predict the success of

bank telemarketing." Decision Support Systems 62 (2014): 22-31.

- [26] Strack, Beata, et al. "Impact of HbA1c measurement on hospital readmission rates: analysis of 70,000 clinical database patient records." BioMed research international 2014 (2014).
- [27] Gardner, Andrew, et al. "Measuring distance between unordered sets of different sizes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014.
- [28] Gardner, Andrew, et al. "3D hand posture recognition from small unlabeled point sets." Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on. IEEE, 2014.
- [29] http://archive.ics.uci.edu/ml/machine-learningdatabases/kddcup99-mld/
- [30]https://archive.ics.uci.edu/ml/machine-learningdatabases/00421/
- [31] Holte, Robert C. "Very simple classification rules perform well on most commonly used datasets." Machine learning 11.1 (1993): 63-90.
- [32] Kira, Kenji, and Larry A. Rendell. "A practical approach to feature selection." Machine Learning Proceedings 1992. 1992. 249-256.
- [33] Katsifarakis, Nikos, and Kostas Karatzas. "A New Feature Selection Methodology for Environmental Modelling Support: The Case of Thessaloniki Air Quality." Environmental Software Systems. Computer Science for Environmental Protection: 12th IFIP WG 5.11 International Symposium, ISESS 2017, Zadar, Croatia, May 10-12, 2017, Proceedings 12. Springer International Publishing, 2017.2603.
- [34] Kononenko, Igor. "Estimating attributes: analysis and extensions of RELIEF." European conference on machine learning. Springer, Berlin, Heidelberg, 1994.
- [35] Robnik-Šikonja, Marko, and Igor Kononenko. "An adaptation of Relief for attribute estimation in regression." Machine Learning: Proceedings of the Fourteenth International Conference (ICML'97). Vol. 5. 1997.
- [36] Hall, Mark A., and Lloyd A. Smith. "Practical feature subset selection for machine learning." Computer science'98 proceedings of the 21st Australasian computer science conference ACSC. Vol. 98. 1998.
- [37] Ruiz, Roberto, José C. Riquelme, and Jesús S. Aguilar-Ruiz. "Incremental wrapper-based gene selection from microarray data for cancer classification." Pattern Recognition 39.12 (2006): 2383-2392.



© 2005 – ongoing JATIT & LLS

ISSN: 1992-8645

<u>www.jatit.org</u>



- [38] B. M. Shashidhara, et al., "Evaluation of machine learning frameworks on bank marketing and Higgs datasets," in Advances in Computing and Communication Engineering (ICACCE), 2015 Second International Conference on, 2015, pp. 551-555.
- [39] A. Rekha, et al., "Artificial Intelligence Marketing: An application of a novel Lightly Trained Support Vector Data Description," Journal of Information and Optimization Sciences, vol. 37, pp. 681-691, 2016.
- [40] B. Shah and B. H. Trivedi, "Reducing features of KDD CUP 1999 dataset for anomaly detection using back propagation neural network," in Advanced Computing & Communication Technologies (ACCT), 2015 Fifth International Conference on, 2015, pp. 247-251.
- [41] J. Kim, et al., "Long short term memory recurrent neural network classifier for intrusion detection," in Platform Technology and Service (PlatCon), 2016 International Conference on, 2016, pp. 1-5.
- [42] W. L. Al-Yaseen, et al., "Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system," Expert Systems with Applications, vol. 67, pp. 296-303, 2017.
- [43] B. A. Tama and K.-H. Rhee, "An integration of pso-based feature selection and random forest for anomaly detection in iot network," in MATEC Web of Conferences, 2018.
- [44] S. Schlag, et al., "Faster Support Vector Machines," arXiv preprint arXiv:1808.06394, 2018.

ISSN: 1992-8645

#### www.jatit.org



E-ISSN: 1817-3195

#### **APPENDICES**

| Attribute Name | GainRatio | InfoGain | OneR     | Releif  | Symm     |
|----------------|-----------|----------|----------|---------|----------|
| age            | 0.011883  | 0.018439 | 0.018439 | 0.0198  | 0.017905 |
| job            | 0.004773  | 0.014223 | 0.014223 | 0.14063 | 0.008156 |
| marital        | 0.001562  | 0.002069 | 0.002069 | 0.07408 | 0.002258 |
| education      | 0.001349  | 0.003448 | 0.003448 | 0.14278 | 0.00225  |
| default        | 0.011256  | 0.008331 | 0.008331 | 0.04785 | 0.01335  |
| housing        | 8.78E-05  | 9.97E-05 | 9.97E-05 | 0.06619 | 0.000121 |
| loan           | 0         | 1.93E-05 | 1.93E-05 | 0.04517 | 3.02E-05 |
| contact        | 0.017742  | 0.016801 | 0.016801 | 0.01689 | 0.023097 |
| month          | 0.014382  | 0.038097 | 0.038097 | 0.04081 | 0.024136 |
| day_of_week    | 0.0002    | 0.000465 | 0.000465 | 0.20365 | 0.000328 |
| duration       | 0.03364   | 0.109413 | 0.109413 | 0.06741 | 0.058192 |
| campaign       | 0.002452  | 0.004285 | 0.004285 | 0.00336 | 0.003799 |
| pdays          | 0.19567   | 0.044484 | 0.044484 | 0.0014  | 0.121009 |
| previous       | 0.040006  | 0.027733 | 0.027733 | 0.0026  | 0.046179 |
| poutcome       | 0.064022  | 0.043834 | 0.043834 | 0.01801 | 0.073514 |
| emp.var.rate   | 0.034411  | 0.078586 | 0.078586 | 0.00433 | 0.056301 |
| cons.price.idx | 0.030057  | 0.098004 | 0.098004 | 0.00724 | 0.052012 |
| cons.conf.idx  | 0.032945  | 0.097628 | 0.097628 | 0.00701 | 0.05625  |
| euribor3m      | 0.030647  | 0.10257  | 0.10257  | 0.00373 | 0.053218 |
| nr.employed    | 0.037894  | 0.08963  | 0.08963  | 0.00392 | 0.062391 |

Table 1: Bank Marketing Dataset Attributes Evaluation Using PART With Five Metrics

Table 2: Diabetes Dataset Attributes Evaluation Using PART With Five Metrics

| Attributes               | GainRatio  | InfoGain | OneR    | Releif   | Symm     |
|--------------------------|------------|----------|---------|----------|----------|
| patient_nbr              | 0.00854371 | 0.033077 | 53.3793 | 0.012637 | 0.007151 |
| race                     | 0.00066143 | 0.000666 | 53.9119 | 0.000562 | 0.004198 |
| gender                   | 0.00027471 | 0.000274 | 53.9119 | 0.000232 | 0.001815 |
| age                      | 0.00087077 | 0.002311 | 53.9119 | 0.00115  | 0.01196  |
| weight                   | 0.000003   | 6.17E-06 | 54.0908 | 3.61E-06 | -1.6E-05 |
| admission_type_id        | 0.00234096 | 0.002944 | 53.9119 | 0.002246 | 0.00211  |
| discharge_disposition_id | 0.0150935  | 0.028613 | 53.9041 | 0.017557 | 0.003087 |
| admission_source_id      | 0.00516324 | 0.008335 | 53.9345 | 0.005598 | 0.002977 |
| time_in_hospital         | 0.00192447 | 0.003718 | 53.9119 | 0.002256 | 0.001371 |
| payer_code               | 0.00088832 | 0.002192 | 53.9198 | 0.001144 | 0.008239 |
| medical_specialty        | 0.00120801 | 0.004347 | 53.9267 | 0.001752 | 0.017418 |
| num_lab_procedures       | 0.00080491 | 0.001682 | 53.909  | 0.000974 | 0.00139  |
| num_procedures           | 0.00104724 | 0.00192  | 53.9119 | 0.001201 | 0.003221 |
| num_medications          | 0.00330751 | 0.006624 | 53.9119 | 0.003935 | 0.001866 |

www.jatit.org

ISSN: 1992-8645



| number_outpatient        | 0.01343898 | 0.008942 | 54.4592 | 0.008814 | 0.001368 |
|--------------------------|------------|----------|---------|----------|----------|
| number_emergency         | 0.02108132 | 0.01343  | 55.0724 | 0.013425 | 0.00055  |
| number_inpatient         | 0.02943808 | 0.044576 | 56.4825 | 0.030979 | 0.00829  |
| diag_1                   | 0.00532257 | 0.036408 | 54.4121 | 0.008876 | 0.016579 |
| diag_2                   | 0.00454018 | 0.029716 | 54.0839 | 0.007515 | 0.009509 |
| diag_3                   | 0.00423976 | 0.027461 | 53.7822 | 0.007005 | 0.015707 |
| number_diagnoses         | 0.00488394 | 0.010136 | 53.907  | 0.005895 | 0.003254 |
| max_glu_serum            | 0.00096921 | 0.000365 | 53.9119 | 0.000419 | 0.001985 |
| A1Cresult                | 0.00055737 | 0.000504 | 53.9119 | 0.000444 | 0.003011 |
| metformin                | 0.0009337  | 0.000757 | 53.9119 | 0.000696 | 0.004112 |
| repaglinide              | 0.00338757 | 0.000412 | 53.9119 | 0.000555 | -1.4E-05 |
| nateglinide              | 0.00042869 | 2.65E-05 | 53.9119 | 3.72E-05 | 0.00014  |
| chlorpropamide           | 0.00675607 | 6.91E-05 | 53.9158 | 0.000101 | 3.53E-05 |
| glimepiride              | 0.00037095 | 0.000119 | 53.9119 | 0.000141 | 0.000561 |
| acetohexamide            | 0.08394652 | 1.49E-05 | 53.9119 | 2.19E-05 | 0        |
| glipizide                | 0.00061396 | 0.000378 | 53.9119 | 0.000382 | 0.001113 |
| glyburide                | 0.00012785 | 7.09E-05 | 53.9119 | 7.4E-05  | 0.001775 |
| tolbutamide              | 0.0043928  | 1.35E-05 | 53.9119 | 1.97E-05 | 0        |
| pioglitazone             | 0.00052883 | 0.00021  | 53.9119 | 0.000238 | 0.000639 |
| rosiglitazone            | 0.00085944 | 0.000306 | 53.9119 | 0.000355 | 0.001585 |
| acarbose                 | 0.00778687 | 0.000238 | 53.9375 | 0.000341 | -1.3E-05 |
| miglitol                 | 0.01761629 | 9E-05    | 53.9149 | 0.000131 | 1.48E-05 |
| troglitazone             | 0.02367811 | 1.15E-05 | 53.9119 | 1.69E-05 | 8.11E-06 |
| tolazamide               | 0.00774476 | 3.85E-05 | 53.9119 | 5.62E-05 | 2.47E-05 |
| examide                  | 0          | 0        | 53.9119 | 0        | 0        |
| citoglipton              | 0          | 0        | 53.9119 | 0        | 0        |
| insulin                  | 0.00207525 | 0.003642 | 53.9119 | 0.002336 | 0.003064 |
| glyburide-metformin      | 0.00133457 | 8.12E-05 | 53.9119 | 0.000114 | 7.28E-05 |
| glipizide-metformin      | 0.00748296 | 1.37E-05 | 53.9139 | 2.01E-05 | 0        |
| glimepiride-pioglitazone | 0.0839465  | 1.49E-05 | 53.9119 | 2.19E-05 | 0        |
| metformin-rosiglitazone  | 0.05219336 | 1.75E-05 | 53.9119 | 2.57E-05 | 0        |
| metformin-pioglitazone   | 0.04930581 | 8.76E-06 | 53.9119 | 1.28E-05 | 0        |
| change                   | 0.00153624 | 0.00153  | 53.9119 | 0.001297 | -0.0007  |
| diabetesMed              | 0.00354371 | 0.002757 | 53.9119 | 0.002575 | 0.002003 |

Table 3: Mocap Hand Postures Dataset Attributes Evaluation Using PART With Five Metrics

| Attr | GainRatio | InfoGain | OneR    | Relief   | Symm    |
|------|-----------|----------|---------|----------|---------|
| User | 0.00723   | 0.025    | 24.8259 | 0.269573 | 0.00865 |
| X0   | 0.04299   | 0.2575   | 33.4089 | 0.068946 | 0.06197 |
| YO   | 0.07679   | 0.5093   | 43.1174 | 0.052394 | 0.11377 |
| ZO   | 0.06609   | 0.3684   | 37.3656 | 0.060442 | 0.09332 |



ISSN: 1992-8645

www.jatit.org

| 045 |            |         | <u>www.ja</u> | 11.015  |          | L-1     |
|-----|------------|---------|---------------|---------|----------|---------|
| Γ   | X1         | 0.03929 | 0.2266        | 31.8044 | 0.067202 | 0.05603 |
|     | Y1         | 0.07335 | 0.4906        | 42.4542 | 0.049285 | 0.10891 |
|     | Z1         | 0.06435 | 0.3475        | 36.8687 | 0.05829  | 0.09001 |
|     | X2         | 0.04084 | 0.2299        | 32.4178 | 0.07102  | 0.05784 |
|     | Y2         | 0.07526 | 0.4984        | 43.047  | 0.052953 | 0.11146 |
|     | Z2         | 0.066   | 0.3494        | 37.4757 | 0.047177 | 0.09177 |
|     | X3         | 0.0398  | 0.227         | 32.8864 | 0.063677 | 0.05658 |
|     | ¥3         | 0.07515 | 0.4877        | 43.8742 | 0.035766 | 0.11071 |
|     | Z3         | 0.06506 | 0.349         | 37.7894 | 0.050979 | 0.09082 |
|     | X4         | 0.03678 | 0.2137        | 33.4396 | 0.075438 | 0.05257 |
|     | Y4         | 0.06996 | 0.4561        | 44.2827 | 0.041644 | 0.10319 |
|     | Z4         | 0.06124 | 0.3285        | 38.5884 | 0.057336 | 0.08549 |
|     | X5         | 0.02811 | 0.1662        | 37.1299 | 0.053686 | 0.04038 |
|     | Y5         | 0.05335 | 0.3462        | 45.3557 | 0.051653 | 0.07858 |
|     | Z5         | 0.04216 | 0.2259        | 39.9956 | 0.040582 | 0.05883 |
|     | X6         | 0.02035 | 0.1202        | 43.4235 | 0.044292 | 0.02922 |
|     | Y6         | 0.03482 | 0.225         | 48.2073 | 0.045295 | 0.05124 |
|     | Z6         | 0.02964 | 0.1517        | 45.7988 | 0.064715 | 0.04078 |
|     | X7         | 0.01408 | 0.0816        | 44.2583 | 0.012321 | 0.02011 |
|     | Y7         | 0.01968 | 0.1151        | 46.9525 | 0        | 0.02818 |
|     | <b>Z</b> 7 | 0.0155  | 0.073         | 44.7014 | 0.022944 | 0.02077 |
|     | X8         | 0.01119 | 0.0569        | 43.896  | 0        | 0.01537 |
|     | Y8         | 0.01208 | 0.0676        | 44.7987 | 0        | 0.01708 |
|     | Z8         | 0.01171 | 0.0537        | 44.2289 | 0        | 0.01555 |
|     | X9         | 0.00809 | 0.039         | 41.5796 | 0.059157 | 0.01093 |
|     | Y9         | 0.0082  | 0.0441        | 42.0739 | 0.031278 | 0.01146 |
|     | Z9         | 0.00835 | 0.0329        | 40.8869 | 0.067289 | 0.01051 |
|     | X10        | 0.00239 | 0.0112        | 34.9211 | 0.043535 | 0.00319 |
|     | Y10        | 0.00323 | 0.0172        | 35.5959 | 0.014054 | 0.0045  |
|     | Z10        | 0.00589 | 0.0219        | 36.4257 | 0.050997 | 0.00725 |
|     | X11        | 0       | 0             | 20.9678 | 1.09E-16 | 0       |
|     | Y11        | 0       | 0             | 20.9678 | 1.09E-16 | 0       |
|     | Z11        | 0       | 0             | 20.9678 | 1.09E-16 | 0       |

| Table 4: | KDD Cup 1999 Dataset Attributes Evaluation Using PART   | With Five Metrics |
|----------|---------------------------------------------------------|-------------------|
| 10010 1. | neb cup 1777 Duluser Thirtotiles Erutuation Osting Time | ment i tre mentes |

| Attr | GainRatio | InfoGain | OneR    | Releif   | Symm     |
|------|-----------|----------|---------|----------|----------|
| att1 | 0.128     | 0.02566  | 56.8012 | 0        | 0.02922  |
| att2 | 0.7656    | 0.749869 | 78.0186 | 0.432155 | 0.591564 |
| att3 | 0.6457    | 1.451671 | 98.5533 | 0.814374 | 0.763265 |
| att4 | 0.8512    | 0.772744 | 76.7197 | 0.513637 | 0.627327 |
| att5 | 0.5621    | 1.388518 | 97.1475 | 0.000239 | 0.689811 |



ISSN: 1992-8645

www.jatit.org

| att6  | 0.5103 | 0.787882 | 74.0475 | 0.000212 | 0.508336 |
|-------|--------|----------|---------|----------|----------|
| att7  | 1      | 0.000327 | 56.8031 | 0.00027  | 0.00042  |
| att8  | 1      | 0.002628 | 56.8164 | 0        | 0.003372 |
| att9  | 0      | 0        | 56.8012 | 0        | 0        |
| att10 | 0.4005 | 0.021701 | 56.9662 | 0.000645 | 0.026958 |
| att11 | 0.3895 | 0.000696 | 56.8012 | 0        | 0.000894 |
| att12 | 0.7146 | 0.714519 | 72.1516 | 0.502149 | 0.559174 |
| att13 | 0.8068 | 0.018521 | 56.9747 | 2.82E-05 | 0.023463 |
| att14 | 0      | 0        | 56.8012 | 2.86E-05 | 0        |
| att15 | 0      | 0        | 56.8012 | 0        | 0        |
| att16 | 0.0837 | 0.002199 | 56.8012 | 0        | 0.00278  |
| att17 | 0.0782 | 0.001055 | 56.8012 | 4.77E-06 | 0.001344 |
| att18 | 0      | 0        | 56.8012 | 1.91E-05 | 0        |
| att19 | 0.084  | 0.002261 | 56.8012 | 0.001314 | 0.002857 |
| att20 | 0      | 0        | 56.8012 | 0        | 0        |
| att21 | 0      | 0        | 56.8012 | 0        | 0        |
| att22 | 0.0818 | 0.001796 | 56.8012 | 0.001001 | 0.002276 |
| att23 | 0.4221 | 1.377399 | 97.2753 | 0.365748 | 0.571693 |
| att24 | 0.2411 | 0.870868 | 78.6338 | 0.301388 | 0.337019 |
| att25 | 0.9196 | 0.747999 | 76.6139 | 0.500137 | 0.631441 |
| att26 | 0.9121 | 0.715417 | 76.4165 | 0.499866 | 0.611424 |
| att27 | 0.3496 | 0.07313  | 57.2818 | 0.026931 | 0.082869 |
| att28 | 0.2555 | 0.057262 | 56.8012 | 0.025552 | 0.064344 |
| att29 | 0.6087 | 0.744118 | 76.4813 | 0.403561 | 0.535693 |
| att30 | 0.8348 | 0.752617 | 76.6015 | 0.045597 | 0.612545 |
| att31 | 0.2221 | 0.245488 | 56.8012 | 0.086606 | 0.18451  |
| att32 | 0.2735 | 0.457017 | 59.2769 | 0.29733  | 0.28327  |
| att33 | 0.3934 | 0.752724 | 74.9154 | 0.396057 | 0.433954 |
| att34 | 0.4369 | 0.761018 | 75.7308 | 0.322406 | 0.461578 |
| att35 | 0.4044 | 0.741163 | 74.6645 | 0.069738 | 0.437476 |
| att36 | 0.3965 | 0.910599 | 76.6739 | 0.393067 | 0.472727 |
| att37 | 0.4206 | 0.431957 | 57.4783 | 0.023424 | 0.334491 |
| att38 | 0.7876 | 0.752207 | 76.5223 | 0.480489 | 0.599183 |
| att39 | 0.808  | 0.728052 | 76.4365 | 0.502253 | 0.592686 |
| att40 | 0.2418 | 0.093149 | 57.1416 | 0.02713  | 0.095984 |
| att41 | 0.2353 | 0.07883  | 56.8012 | 0.023349 | 0.083381 |

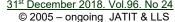
ISSN: 1992-8645

www.jatit.org



| Attr   | GainRatio | InfoGain | OneR   | Releif   | Symm    |
|--------|-----------|----------|--------|----------|---------|
| aa_000 | 0.05934   | 0.064103 | 98.33  | 0.054689 | 0.10661 |
| ab_000 | 0.0037    | 0.000361 | 98.333 | 0.000392 | 0.00328 |
| ac_000 | 0.008     | 0.019968 | 98.327 | 0.265256 | 0.01525 |
| ad_000 | 0.00636   | 0.013099 | 98.333 | 0.006316 | 0.01201 |
| ae_000 | 0         | 0        | 98.333 | -9.3E-05 | 0       |
| af_000 | 0         | 0        | 98.333 | 0        | 0       |
| ag_000 | 0.2031    | 0.006434 | 98.35  | 0.000156 | 0.08358 |
| ag_001 | 0.25861   | 0.028653 | 98.553 | 0.000703 | 0.24586 |
| ag_002 | 0.10036   | 0.036919 | 98.66  | 0.008036 | 0.15064 |
| ag_003 | 0.03405   | 0.038504 | 98.568 | 0.021426 | 0.06146 |
| ag_004 | 0.02363   | 0.044395 | 98.26  | 0.040342 | 0.04437 |
| ag_005 | 0.02553   | 0.051223 | 98.37  | 0.047157 | 0.04813 |
| ag_006 | 0.01437   | 0.03262  | 98.377 | 0.019729 | 0.02726 |
| ag_007 | 0.01623   | 0.019712 | 98.323 | 0.009639 | 0.02949 |
| ag_008 | 0.00828   | 0.013952 | 98.313 | 0.002146 | 0.01544 |
| ag_009 | 0.00429   | 0.004478 | 98.328 | 0.000753 | 0.00768 |
| ah_000 | 0.05195   | 0.061986 | 98.375 | 0.056081 | 0.09425 |
| ai_000 | 0.05221   | 0.029577 | 98.265 | 0.003095 | 0.08588 |
| aj_000 | 0.01008   | 0.008367 | 98.307 | 0.000238 | 0.01757 |
| ak_000 | 0.01265   | 0.000661 | 98.333 | -1.6E-06 | 0.00758 |
| al_000 | 0.03049   | 0.042637 | 98.608 | 0.011215 | 0.05607 |
| am_0   | 0.03095   | 0.043673 | 98.557 | 0.011537 | 0.05697 |
| an_000 | 0.06387   | 0.060726 | 98.39  | 0.054605 | 0.11317 |
| ao_000 | 0.06177   | 0.060299 | 98.422 | 0.053296 | 0.10979 |
| ap_000 | 0.07629   | 0.063032 | 98.317 | 0.026606 | 0.1329  |
| aq_000 | 0.04844   | 0.063605 | 98.39  | 0.03549  | 0.08863 |
| ar_000 | 0.02515   | 0.007097 | 98.335 | 0.018774 | 0.03509 |
| as_000 | 0.21424   | 0.000455 | 98.338 | -5E-06   | 0.00731 |
| at_000 | 0.01005   | 0.005562 | 98.36  | 0.000173 | 0.01646 |
| au_000 | 0.14573   | 0.001777 | 98.352 | -3E-06   | 0.02642 |
| av_000 | 0.01094   | 0.023991 | 98.303 | 0.007113 | 0.02072 |
| ax_000 | 0.01025   | 0.018241 | 98.327 | 0.005582 | 0.01919 |
| ay_000 | 0.05491   | 0.004526 | 98.372 | 0.00515  | 0.04422 |
| ay_001 | 0.06152   | 0.004588 | 98.338 | 0.000474 | 0.04661 |
| ay_002 | 0.13411   | 0.005903 | 98.392 | 0.000989 | 0.07099 |
| ay_003 | 0.09683   | 0.005794 | 98.377 | 0.003475 | 0.06362 |

Table 5: APS Failure At Scania Trucks Dataset Attributes Evaluation Using PART With Five Metrics



www.jatit.org

ISSN: 1992-8645



| 92-8645 |         | www.jati | t.org  |          | E-I     |
|---------|---------|----------|--------|----------|---------|
| ay_004  | 0.03603 | 0.008809 | 98.405 | 0.001471 | 0.04804 |
| ay_005  | 0.01276 | 0.016536 | 98.367 | 0.001761 | 0.02331 |
| ay_006  | 0.01228 | 0.0177   | 98.332 | 0.01994  | 0.02263 |
| ay_007  | 0.01706 | 0.034644 | 98.205 | 0.012751 | 0.03218 |
| ay_008  | 0.04585 | 0.037672 | 98.3   | 0.039881 | 0.07982 |
| ay_009  | 0.16956 | 0.013839 | 98.452 | 0.027207 | 0.13574 |
| az_000  | 0.0347  | 0.052378 | 98.263 | 0.005495 | 0.06419 |
| az_001  | 0.03004 | 0.050065 | 98.397 | 0.008983 | 0.05597 |
| az_002  | 0.02984 | 0.050026 | 98.413 | 0.001489 | 0.05563 |
| az_003  | 0.01022 | 0.019601 | 98.305 | 0.00305  | 0.01921 |
| az_004  | 0.01439 | 0.03291  | 98.308 | 0.0141   | 0.02732 |
| az_005  | 0.0275  | 0.04772  | 98.298 | 0.039267 | 0.05137 |
| az_006  | 0.00526 | 0.008302 | 98.327 | 0.009957 | 0.00977 |
| az_007  | 0.01168 | 0.016143 | 98.403 | 0.034495 | 0.02146 |
| az_008  | 0.01312 | 0.007291 | 98.333 | 8.3E-05  | 0.02151 |
| az_009  | 0.0203  | 0.004705 | 98.33  | -9.5E-05 | 0.02658 |
| ba_000  | 0.03624 | 0.051533 | 98.343 | 0.033332 | 0.06674 |
| ba_001  | 0.0278  | 0.050886 | 98.283 | 0.027294 | 0.05212 |
| ba_002  | 0.0437  | 0.051837 | 98.212 | 0.039741 | 0.07923 |
| ba_003  | 0.02831 | 0.052333 | 98.38  | 0.031388 | 0.05311 |
| ba_004  | 0.02873 | 0.051322 | 98.398 | 0.027023 | 0.05378 |
| ba_005  | 0.02339 | 0.046223 | 98.38  | 0.027373 | 0.04405 |
| ba_006  | 0.02024 | 0.038741 | 98.267 | 0.019439 | 0.03805 |
| ba_007  | 0.01437 | 0.030778 | 98.287 | 0.025147 | 0.02718 |
| ba_008  | 0.02335 | 0.029829 | 98.278 | 0.016011 | 0.04263 |
| ba_009  | 0.02497 | 0.024091 | 98.298 | 0.029467 | 0.04433 |
| bb_000  | 0.05867 | 0.063643 | 98.397 | 0.043317 | 0.10545 |
| bc_000  | 0.00954 | 0.019603 | 98.297 | 0.016249 | 0.01801 |
| bd_000  | 0.01116 | 0.027465 | 98.307 | 0.00295  | 0.02127 |
| be_000  | 0.01158 | 0.023246 | 98.327 | 0.006178 | 0.02183 |
| bf000   | 0.00659 | 0.008907 | 98.325 | 0.00696  | 0.01209 |
| bg_000  | 0.05181 | 0.061828 | 98.372 | 0.056242 | 0.09399 |
| bh000   | 0.06955 | 0.06131  | 98.308 | 0.031641 | 0.12216 |
| bi000   | 0.03628 | 0.055474 | 98.273 | 0.012981 | 0.06718 |
| bj_000  | 0.06444 | 0.065734 | 98.372 | 0.026949 | 0.11509 |
| bk_000  | 0.0159  | 0.026885 | 98.377 | 0.121054 | 0.02965 |
| bl000   | 0.01282 | 0.024102 | 98.31  | 0.132517 | 0.02408 |
| bm_000  | 0.01971 | 0.032717 | 98.292 | 0.135327 | 0.03671 |
| bn_000  | 0.02835 | 0.038516 | 98.332 | 0.136182 | 0.05201 |
| bo000   | 0.0365  | 0.041953 | 98.218 | 0.124863 | 0.06599 |
| bp_000  | 0.04267 | 0.044582 | 98.263 | 0.125308 | 0.07639 |
|         |         |          |        |          |         |



ISSN: 1992-8645

www.jatit.org

| 43         |         | <u>www.jau</u> | <u>t.01g</u> |          | E-17    |
|------------|---------|----------------|--------------|----------|---------|
| bq_000     | 0.04879 | 0.047191       | 98.265       | 0.123496 | 0.08663 |
| br_000     | 0.05614 | 0.048837       | 98.275       | 0.135879 | 0.09845 |
| <br>bs_000 | 0.00805 | 0.016204       | 98.315       | 0.07371  | 0.01518 |
| bt_000     | 0.04907 | 0.063862       | 98.313       | 0.044541 | 0.0897  |
| <br>bu_000 | 0.05842 | 0.063498       | 98.385       | 0.043334 | 0.10503 |
| bv_000     | 0.05842 | 0.063498       | 98.387       | 0.043334 | 0.10503 |
| bx_000     | 0.03845 | 0.056801       | 98.345       | 0.04071  | 0.07103 |
| by_000     | 0.0282  | 0.054189       | 98.383       | 0.04887  | 0.05303 |
| bz_000     | 0.00445 | 0.009077       | 98.322       | 0.003295 | 0.0084  |
| ca_000     | 0.01565 | 0.020494       | 98.333       | 0.241526 | 0.02863 |
| cb_000     | 0.00336 | 0.005144       | 98.333       | 0.22544  | 0.00622 |
| cc_000     | 0.04115 | 0.057691       | 98.382       | 0.048707 | 0.0757  |
| cd_000     | 0.00733 | 0.000653       | 98.333       | 0.122922 | 0.00618 |
| ce_000     | 0.0215  | 0.029061       | 98.313       | 0.064487 | 0.03943 |
| cf_000     | 0.01004 | 0.011734       | 98.322       | -6.8E-05 | 0.01818 |
| cg_000     | 0.00994 | 0.018784       | 98.333       | 0.010246 | 0.01867 |
| ch_000     | 0       | 0              | 98.333       | 0        | 0       |
| ci_000     | 0.06587 | 0.065802       | 98.365       | 0.050465 | 0.11737 |
| cj_000     | 0.02007 | 0.019744       | 98.428       | 0.011239 | 0.0357  |
| ck_000     | 0.05382 | 0.064663       | 98.24        | 0.041375 | 0.09769 |
| cl_000     | 0.05676 | 0.021218       | 98.293       | 0.002331 | 0.08553 |
| cm_000     | 0.0118  | 0.022537       | 98.342       | 0.019454 | 0.02217 |
| cn_000     | 0.11947 | 0.030809       | 98.573       | 0.00315  | 0.16208 |
| cn_001     | 0.04297 | 0.034653       | 98.585       | 0.01532  | 0.07462 |
| cn_002     | 0.02362 | 0.036825       | 98.352       | 0.022375 | 0.04381 |
| cn_003     | 0.03459 | 0.048335       | 98.258       | 0.03386  | 0.06362 |
| cn_004     | 0.03719 | 0.05018        | 98.365       | 0.032132 | 0.0682  |
| cn_005     | 0.01849 | 0.03696        | 98.292       | 0.021867 | 0.03485 |
| cn_006     | 0.01171 | 0.026223       | 98.257       | 0.012264 | 0.02221 |
| cn_007     | 0.0117  | 0.027664       | 98.242       | 0.017329 | 0.02225 |
| cn_008     | 0.01791 | 0.02684        | 98.308       | 0.021227 | 0.03312 |
| cn_009     | 0.00919 | 0.017001       | 98.322       | 0.011429 | 0.01724 |
| co_000     | 0.00318 | 0.006098       | 98.337       | 0.00423  | 0.00597 |
| cp_000     | 0.00931 | 0.017557       | 98.332       | 0.00209  | 0.01749 |
| cq_000     | 0.05842 | 0.063498       | 98.385       | 0.043334 | 0.10503 |
| cr_000     | 0.0542  | 0.000405       | 98.333       | 1.1E-06  | 0.00624 |
| cs_000     | 0.02061 | 0.040013       | 98.275       | 0.036672 | 0.03877 |
| cs_001     | 0.02382 | 0.044337       | 98.293       | 0.035575 | 0.04471 |
| cs_002     | 0.0431  | 0.05406        | 98.207       | 0.031969 | 0.07855 |
| cs_003     | 0.02856 | 0.049523       | 98.222       | 0.016504 | 0.05336 |
| cs_004     | 0.04342 | 0.05314        | 98.267       | 0.021647 | 0.07894 |



ISSN: 1992-8645

www.jatit.org

| 13                                       |                               | <u>w w w.jau</u>                 | <u>1.01g</u>              |                      | E-1                |
|------------------------------------------|-------------------------------|----------------------------------|---------------------------|----------------------|--------------------|
| cs_005                                   | 0.02573                       | 0.047213                         | 98.322                    | 0.036052             | 0.04825            |
| cs_006                                   | 0.02329                       | 0.020401                         | 98.287                    | 0.031197             | 0.04087            |
| cs_007                                   | 0.00719                       | 0.017691                         | 98.33                     | 0.00127              | 0.01369            |
| cs_008                                   | 0.00312                       | 0.006113                         | 98.332                    | 7.06E-05             | 0.00587            |
| cs_009                                   | 0.03865                       | 0.00024                          | 98.333                    | -1E-05               | 0.00373            |
| ct_000                                   | 0.00575                       | 0.012877                         | 98.328                    | 0.01099              | 0.0109             |
| cu_000                                   | 0.00806                       | 0.016207                         | 98.315                    | 0.00176              | 0.01519            |
| cv_000                                   | 0.01335                       | 0.026995                         | 98.283                    | 0.063609             | 0.02518            |
| cx_000                                   | 0.01283                       | 0.025099                         | 98.302                    | 0.033665             | 0.02415            |
| cy_000                                   | 0.02075                       | 0.003221                         | 98.328                    | 0.002444             | 0.02321            |
| cz_000                                   | 0.00304                       | 0.005964                         | 98.327                    | 0.001869             | 0.00573            |
| da_000                                   | 0                             | 0                                | 98.333                    | -8.3E-05             | 0                  |
| db_000                                   | 0.00829                       | 0.007537                         | 98.333                    | 0                    | 0.01462            |
| dc_000                                   | 0.01395                       | 0.027909                         | 98.298                    | 0.041415             | 0.02629            |
| dd_000                                   | 0.02812                       | 0.045678                         | 98.248                    | 0.023877             | 0.05231            |
| de_000                                   | 0.02132                       | 0.033453                         | 98.315                    | 0.00985              | 0.03956            |
| df_000                                   | 0.20795                       | 0.003311                         | 98.338                    | 0.003541             | 0.04791            |
| dg_000                                   | 0.02796                       | 0.004606                         | 98.378                    | 0.003945             | 0.03209            |
| dh_000                                   | 0.00319                       | 0.002165                         | 98.333                    | -1.6E-05             | 0.00541            |
| di_000                                   | 0.00792                       | 0.006573                         | 98.34                     | 0.002364             | 0.01381            |
| dj_000                                   | 0                             | 0                                | 98.333                    | -2.8E-06             | 0                  |
| dk_000                                   | 0                             | 0                                | 98.333                    | -7.5E-05             | 0                  |
| dl_000                                   | 0                             | 0                                | 98.333                    | 3.88E-05             | 0                  |
| dm_000                                   | 0                             | 0                                | 98.333                    | 1.73E-05             | 0                  |
| dn_000                                   | 0.05118                       | 0.063722                         | 98.355                    | 0.036472             | 0.0932             |
| do_000                                   | 0.01097                       | 0.020683                         | 98.357                    | 0.035351             | 0.0206             |
| dp_000                                   | 0.00756                       | 0.020634                         | 98.36                     | 0.02892              | 0.01446            |
| dq_000                                   | 0.0083                        | 0.00836                          | 98.315                    | 0.011692             | 0.0148             |
| dr_000                                   | 0.00817                       | 0.009199                         | 98.297                    | 0.023004             | 0.01474            |
| ds_000                                   | 0.0212                        | 0.041745                         | 98.277                    | 0.051881             | 0.03991            |
| dt_000                                   | 0.02198                       | 0.041382                         | 98.358                    | 0.062894             | 0.04128            |
| du_000                                   | 0.01184                       | 0.01926                          | 98.317                    | 0.01844              | 0.02202            |
| dv_000                                   | 0.01316                       | 0.021831                         | 98.305                    | 0.005467             | 0.02451            |
| dx 000                                   | 0.00672                       | 0.008785                         | 98.31                     | 0.034744             | 0.01229            |
|                                          | 0.00.00                       | 0.000((2                         | 98.323                    | 0.003061             | 0.01099            |
|                                          | 0.00596                       | 0.008663                         |                           |                      |                    |
| -                                        | 0.00596                       | 0.008663                         | 98.33                     | -1.9E-06             | 0.00261            |
|                                          |                               |                                  |                           | -1.9E-06<br>-5.8E-05 | 0.00261<br>0.00316 |
| <br>dy_000<br>dz_000                     | 0.03985                       | 0.000165                         | 98.33                     |                      |                    |
| dy_000<br>dz_000<br>ea_000               | 0.03985<br>0.00342            | 0.000165<br>0.000359             | 98.33<br>98.333           | -5.8E-05             | 0.00316            |
| <br>dy_000<br>dz_000<br>ea_000<br>eb_000 | 0.03985<br>0.00342<br>0.00684 | 0.000165<br>0.000359<br>0.013875 | 98.33<br>98.333<br>98.337 | -5.8E-05<br>0.011118 | 0.00316<br>0.0129  |



www.jatit.org

| -      | -       |          |        |          |         |
|--------|---------|----------|--------|----------|---------|
| ee_001 | 0.0219  | 0.04754  | 98.293 | 0.014519 | 0.04146 |
| ee_002 | 0.0234  | 0.048593 | 98.397 | 0.039534 | 0.0442  |
| ee_003 | 0.0219  | 0.045201 | 98.367 | 0.021799 | 0.04134 |
| ee_004 | 0.0232  | 0.043646 | 98.328 | 0.02856  | 0.04357 |
| ee_005 | 0.03075 | 0.048769 | 98.573 | 0.039454 | 0.0571  |
| ee_006 | 0.01687 | 0.039952 | 98.385 | 0.026574 | 0.03209 |
| ee_007 | 0.02463 | 0.024192 | 98.277 | 0.018198 | 0.04381 |
| ee_008 | 0.009   | 0.016591 | 98.335 | 0.005648 | 0.01688 |
| ee_009 | 0.00322 | 0.005551 | 98.323 | 0        | 0.00602 |
| ef_000 | 0.02384 | 0.000195 | 98.332 | 1.44E-05 | 0.00299 |
| eg_000 | 0.01563 | 0.00016  | 98.333 | -1.9E-05 | 0.00241 |