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A Path To DOT: Formalizing Fully-Path-Dependent Types
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The Dependent Object Types (DOT) calculus aims to formalize the Scala programming language with a focus

on path-dependent types — types such as x .a1 . . . an .T that depend on the runtime value of a path x .a1 . . . an to

an object. Unfortunately, existing formulations of DOT can model only types of the form x .Awhich depend on

variables rather than general paths. This restriction makes it impossible to model nested module dependencies.

Nesting small components inside larger ones is a necessary ingredient of a modular, scalable language. DOT’s

variable restriction thus undermines its ability to fully formalize a variety of programming-language features

including Scala’s module system, family polymorphism, and covariant specialization.

This paper presents the pDOT calculus, which generalizes DOT to support types that depend on paths of

arbitrary length, as well as singleton types to track path equality. We show that naive approaches to add paths

to DOT make it inherently unsound, and present necessary conditions for such a calculus to be sound. We

discuss the key changes necessary to adapt the techniques of the DOT soundness proofs so that they can be

applied to pDOT. Our paper comes with a Coq-mechanized type-safety proof of pDOT. With support for paths

of arbitrary length, pDOT can realize DOT’s full potential for formalizing Scala-like calculi.

1 INTRODUCTION
Path-dependent types embody two universal principles of modular programming: abstraction and

composition.

path-dependent︸              ︷︷              ︸
composition

type︸︷︷︸
abstraction

Abstraction allows us to leave values or types in a program unspecified to keep it generic and

reusable. For example, in Scala, we can define trees where the node type remains abstract.

trait Tree {

type Node

val root : Node

def add(node: Node): Tree }

If an object x has type Tree, then the path-dependent type x.Node denotes the type of abstract nodes.
Composition is the ability to build our program out of smaller components. For example, if we

are interested in a specific kind of tree, say a red-black tree, then we can refine the abstract Node
type to contain a Color type.
trait RedBlackTree extends Tree {

type Node <: { type Color }}

This exemplifies composition in at least two ways: by having RedBlackTree extend Tree we have
inherited its members; and by nesting the refined definition of Node within RedBlackTree we have
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used aggregation. If an object r is a RedBlackTree, then the path-dependent type r.root.Color allows
us to traverse the composition and access the Color type member.

To fulfill their full potential with respect to composition, path-dependent types distinguish

between paths that have different runtime values. For example, if we have apple and orange trees,

we want to disallow mixing up their nodes.

val appleTree : Tree

val orangeTree: Tree

appleTree .add( orangeTree.root) // type mismatch, expected : appleTree .Node, actual : orangeTree .Node

Here, the type system considers appleTree.Node and orangeTree.Node to be distinct and incompatible

types because they depend on the runtime values of different objects.

Furthermore, path-dependent types allow Scala to unify modules and objects, so that the same

language constructs can be used to specify the overall structure of a program as well as its imple-

mentation details. The unification of the module and term languages is witnessed by the following

comparison with the ML module system: Scala objects correspond to ML modules, classes to

functors, and interfaces to signatures [Odersky and Zenger 2005].

The long struggle to formalize path-dependent types recently led to machine-verified soundness

proofs for several variants of the Dependent Object Types (DOT) calculus [Amin et al. 2016; Amin

and Rompf 2017; Rompf and Amin 2016]. In spite of its apparent simplicity DOT is an expressive

calculus that can encode a variety of language features, and the discovery of its soundness proof was

a breakthrough for the Scala community. Insights from the proof have influenced the design of

Scala 3 and helped uncover soundness bugs in Scala and Java [Amin and Tate 2016].

However, a crucial limitation is that the existing DOT calculi restrict path-dependent types to

depend only on variables, not on general paths. That is, they allow the type x.Node (path of length 1)

but not a longer type such as r.root.Color (length 2). We need to lift this restriction in order to

faithfully model Scala which does allow general path-dependent types. More importantly, this

restriction must be lifted to fulfill the goal of scalable component abstraction [Odersky and Zenger

2005], in which modules of a program can be arbitrarily nested to form other, larger modules.

In this paper, we formalize and prove sound a generalization of the DOT calculus [Amin et al.

2016] with path-dependent types of arbitrary length. We call the new path-dependent calculus

pDOT. Our Coq-verified proof is built on top of the proof of Rapoport et al. [2017].

At this point, two questions naturally arise. Are fully path-dependent types really necessary?

That is, do they provide additional expressiveness, or are they just syntactic sugar over variable-

dependent types? And if fully path-dependent types are in fact useful, what are the barriers to

adding them to DOT?

Why Fully Path-Dependent Types Are Necessary
The need for paths of arbitrary length is illustrated by the following simplified excerpt from the

implementation of the Scala 3 (“Dotty”) compiler:

Scala:

package dotty {

package core {

object types {

class Type

class TypeRef extends Type {
val symb: core.symbols.Symbol }}

object symbols {

class Symbol {

val tpe : core.types.Type }}}}

DOT pseudocode:

let dotty = new {

val core = new {

val types = new {

type Type

type TypeRef = Type & {

val symb: core.symbols.Symbol }}

val symbols = new {

type Symbol = {

val tpe : core.types.Type }}}}
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Type references (TypeRef) are Types that have an underlying class or trait definition (Symbol), while
Symbols in the language also have a Type. Additionally, TypeRefs and Symbols are nested in different

packages, core.types and core.symbols.
It is impossible to express the above type dependencies in DOT while maintaining the nested

program structure, as shown on the right in DOT pseudocode (Section 2.1 presents the actual

DOT syntax and type system). To replicate nested Scala modules, DOT uses objects and fields.

Unfortunately, we run into problems when typing the symb field because the desired path-dependent
type core.symbols.Symbol has a path of length two.

We are then tempted to find a workaround. One option is to try to reference Symbol as a path-
dependent type of length one: symbols.Symbol instead of core.symbols.Symbol. However, this will not
do because symbols is a field, and DOT requires that field accesses happen through the enclosing

object (core). Another option is to move the definition of the Symbol type member to the place it is

accessed from, to ensure that the path to the type member has length 1.

val types = new {

type Type; type Symbol

type TypeRef = Type & { val symb: this . Symbol }}

However, such a transformation would require flattening the nested structure of the program

whenever we need to use path-dependent types. This would limit encapsulation and our ability to

organize a program according to its logical structure. Yet another approach is to assign the symbols
object to a variable that is defined before the dotty object:
let symbols = new { type Symbol = { val tpe : dotty . core . types .Type }} in
let dotty = new ...

This attempt fails as well, as the symbols object can no longer reference the dotty package. For the
above example this means that a Symbol cannot have a Type (see Section 2.2 for details).

This real-world pattern with multiple nested modules and intricate dependencies between them

(sometimes even recursive dependencies, as in our example), leads to path-dependent types of

length greater than one. Because path-dependent types are used in DOT to formalize features like

parametric and family polymorphism [Ernst 2001], covariant specialization [Bruce et al. 1998],

and wildcards, among others, a version of DOT with just variable-dependent types can only

formalize these features in special cases. Thus, to unleash the full expressive power of DOT we

need path-dependent types on paths of arbitrary length.

Why Fully Path-Dependent Types Are Hard
The restriction to types dependent on variables rather than paths is not merely cosmetic; it is

fundamental. A key challenge in formalizing the DOT calculi is the bad bounds problem, discussed in

Section 2.3.1: the occurrence of a type member in a program introduces new subtyping relationships,

and these subtyping relationships could undermine type safety in the general case. To maintain

type safety, the existing DOT calculi ensure that whenever a type x .A is in scope, any code in the

same scope will not execute until x has been assigned some concrete value; the value serves as

evidence that type soundness has not been subverted. As we show in Section 2.3.2, if we allow a

type to depend on a path, rather than a variable, we must extend this property to paths: we must

show that whenever a scope admits a given path, that path will always evaluate to some stable

value. The challenge of ensuring that the paths of type-selections always evaluate to a value is

to rule out the possibility that paths cyclically alias each other, while at the same time keeping

the calculus expressive enough to allow recursion. By contrast, the DOT calculus automatically

avoids the problem of type selections on non-terminating paths (i.e. paths whose evaluation does

not terminate) because in DOT all paths are variables, and variables are considered normal form.
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A second challenge of extending DOT with support for general paths is to track path equality.

Consider the following program:

val t1 = new ConcreteTree

val t2 = new ConcreteTree

val t3 = t2

A subclass of Tree such as ConcreteTree (not shown) refines Node with a concrete type that

implements some representation of nodes. We want the types t1.Node and t2.Node to be considered

distinct even though t1 and t2 are both initialized to the same expression. That way, we can

distinguish the nodes of different tree instances. On the other hand, notice that the reference t3 is
initialized to be an alias to the same tree instance as t2. We therefore want t2.Node and t3.Node to
be considered the same type.

How can the type system tell the difference between t1.Node and t2.Node, so that the former is

considered distinct from t3.Node, but the latter is considered the same? Scala uses singleton types for

this purpose. In Scala, t3 can be typed with the singleton type t2.type which guarantees that it is an

alias for the same object as t2. The type system treats paths that are provably aliased (as evidenced

by singleton types) as interchangeable, so it considers t2.Node and t3.Node as the same type. We add

singleton types to pDOT for two reasons: first, we found singleton types useful for formalizing

path-dependent types, and second, enabling singleton types brings DOT closer to Scala.

This paper contributes the following:

1) The pDOT calculus, a generalization of DOT with path-dependent types of arbitrary length
that lifts DOT’s type-selection-on-variables restriction. Section 3 provides an intuition for pDOT’s

main ideas, and Section 4 presents the calculus in detail.

2) The first extension of DOT with singleton types, a Scala feature that, in addition to tracking

path equality, enables the method chaining pattern and hierarchical organization of compo-

nents [Odersky and Zenger 2005].

3) A Coq-mechanized type soundness proof of pDOT that is based on the simple soundness

proof by Rapoport et al. [2017]. Our proof maintains the simple proof’s modularity properties

which makes it easy to extend pDOT with new features. We describe the proof in Section 5 and

include its Coq formalization in the accompanying artifact.

4) Formalized examples, presented in Section 6, that illustrate the expressive power of pDOT: the
compiler example from this section that uses general path-dependent types, a method chaining

example that uses singleton types, and a covariant list implementation.

The Coq proof of pDOT can be found under

https://git.io/dotpaths

2 DOT: BACKGROUND AND LIMITATIONS
In this section, we survey the existing DOT calculus and discuss the challenges related to path-

dependent types.

2.1 The DOT Calculus
We begin by reviewing the syntax of the DOT calculus of Amin et al. [2016].

1
A term t in DOT is a

variable x , a value v , a function application x y, a field selection x .a, or a let binding let x = t in u.
The meanings of the terms are standard. The syntax is in Administrative Normal Form (ANF),

which forces terms to be bound to variables by let bindings before they are used in a function

application or as the base of a path. Values are either lambda abstractions, which are standard, or

1
For full details of the DOT calculus, please refer to Amin et al. [2016]. For reference, we provide the full syntax and typing

rules of DOT in Figures 7 and 8 in the Appendix.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://git.io/dotpaths


A Path To DOT 1:5

objects. An object ν (x : T )d defines a self variable x , which models the Scala this construct, specifies
a self-type T for the object, and lists the field and type members d defined in the object, separated

by the intersection operator ∧. Both the type T and the member definitions d can recursively refer

to the object itself through the self variable x .
A DOT type is one of the following:

– A dependent function type ∀(x : S )T characterizes functions that take an argument of type S
and return a result of type T . The result type T may refer to the parameter x .

– A recursive type µ (x : T ) is the type of an object ν (x : T )d . The typeT describes the members

of the object, and may refer to the recursive self variable x .
– A field declaration type {a : T } classifies objects that have a field named a with type T .
– A member type declaration type {A : S ..U } classifies objects that declare a type member A
with the constraints that A is a supertype of S and a subtype ofU .

– A type projection x .A selects the member typeA from the object referenced by the variable x .
– An intersection type S ∧T is the greatest subtype of both S andT . Unlike some other systems

with intersection types, DOT does not define any distributive laws for intersections.

– The top (⊤) and bottom (⊥) types are the supertype and subtype of all types, respectively.

In the following, we will write ν (x )d instead of ν (x : T )d if the self type of an object is not

important. If a self variable is not used in the object we will denote it with an underscore: ν (_)d .
DOT’s operational semantics is presented in Figure 3 on Page 16. The reduction relation operates

on terms whose free variables are bound in a value environment γ that maps variables to values. In

DOT, variables and values are considered normal form, i.e. they are irreducible. In particular, objects

ν (x : T )d are values, and the fields of an object are not evaluated until those fields are selected.

DOT fields are thus similar to Scala’s lazy vals which declare immutable, lazily evaluated values

(however, lazy vals differ from DOT fields because DOT does not memoize its fields).

2.1.1 Recursion Elimination. The recursion-elimination rule
Γ ⊢ x : µ (z : T )

Γ ⊢ x : T [x/z]
is of particular interest in

the context of paths. An object in DOT can recursively refer back to itself through the self variable.

For example, the a member of the following object evaluates to the object itself (see the Scala

version on the right):

let x = ν (z ) {a = z } in . . . val x = new { val a = this }

Since types in DOT and Scala are dependent, the type of an object can also refer to the object itself:

let y = ν (z ) {A = T } ∧ {a = λ (x : z .A) x } in . . . val y = new { type A = T; val a = (x : this .A) => x }

The type of the field a depends on the type of the object containing it. In DOT, this is expressed

using a recursive type. The type of our example object is µ (z : {A : T ..T } ∧ {a : ∀(x : z.A) z.A}).
Given the let binding above, what should be the type of y.a? In the recursive type of y, the type

of the field a is ∀(x : z.A) z.A. However, because the self variable z is in scope only inside the object

itself, the type ∀(x : z.A) z.A does not make sense outside the object and cannot be used to type y.a.
In the field selection, however, we have a name other than z for the object itself, the name y.
Therefore, we can open the recursive type by replacing the self variable z with the external name

of the object y, giving y the type {A : T [y/z] ..T [y/z]} ∧
{
a : ∀(x : y.A)y.A

}
. This is achieved by the

recursion elimination typing rule. Now the path y.a can have the type ∀(x : y.A)y.A. Notice that
recursion elimination is possible only when we have a variable such as y as an external name for

an object.

Just as we need to apply recursion elimination to the type ofy before we can type a field selection

y.a, we must also do the same before we can use a type-member selection y.A (specifically, to

conclude that T [y/z] <: y.A <: T [y/z]). The recursion elimination is necessary because the type
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T could also refer to the self variable z, and thus may not make any sense outside of the object.

Recursion elimination replaces occurrences of z in the type T with the external name y, so that the

resulting type is valid even outside the object. When we add path-dependent types to the calculus,

an important consideration will be recursion elimination on paths rather than just variables.

2.2 Path Limitations: A Minimal Example
Consider the following example DOT object in which a type member B refers to a type member A
that is nested inside the definition of a field c:

let x = ν (z )
{c = ν (_) {A = z .B } } ∧

{B = z .c .A} in . . .

val x = new { z ⇒

val c : { type A } = new { type A = z .B }

type B = z . c .A }

In the example, to reference the field c , we must first select the field’s enclosing object x through

its self variable z. As a result, the path to A leads through z.c which is a path of length two. Since

DOT does not allow paths of length two, this definition of B cannot be expressed in DOT without

flattening the program structure so that all fields and type members become global members of

one top-level object.

In the introduction, we illustrated how one might attempt to express the above in DOT by

decomposing the path of length two into dereferences of simple variables, which would either

lead to invalid programs or require flattening the program structure. We could try other ways of

let-binding the inner objects to variables before defining the enclosing object, but all such attempts

are doomed to failure (unless we are willing to give up object nesting). A sequence of let bindings

imposes a total ordering on the objects and restricts an object to refer only to objects that are

defined before it. In the presence of recursive references between the objects, as in this example, no

valid ordering of the let bindings is possible while maintaining a nested object structure. To avoid

this we could also try to transform the local variables into recursively defined fields of another

object z ′, since the order in which fields are declared does not matter. However, thenAwould again

need to refer to B through z ′.x .B (or z ′.y.B) which has a path of length 2.

2.3 Challenges of Adding Paths to DOT
If restricting path-dependent types exclusively to variables limits the expressivity of DOT then

why does the calculus impose such a constraint? Before we explain the soundness issue that makes

it difficult to extend DOT with paths we must first review the key challenge that makes it difficult

to ensure soundness of the DOT calculus.

2.3.1 Bad Bounds. Scala’s abstract type members make it possible to define custom subtyping

relationships between types. This is a powerful but tricky feature. For example, given any types

S and U , consider the function λ(x : {A : S ..U }) t . In the body of the function, we can use x .A
as a placeholder for some type that is a supertype of S and a subtype of U . Some concrete type

will be bound to x .A when the function is eventually called with some specific argument. Due

to transitivity of subtyping, the constraints on x .A additionally introduce an assumption inside

the function body that S <: U , because S <: x .A <: U according to the type rules <:-Sel DOT and

Sel-<: DOT:

Γ ⊢ x : {A : S ..T }
Γ ⊢ S <: x .A

(<:-Sel
DOT

)

Γ ⊢ x : {A : S ..T }
Γ ⊢ x .A <: T

(Sel-<:
DOT

)

However, recall that S andU are arbitrary types, possibly with no existing subtyping relationship.

The key to soundness is that although the function body is type-checked under the possibly unsound

assumption S <: U , the body executes only when the function is called, and calling the function
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requires an argument that specifies a concrete typeT to be bound to x .A. This argument type must

satisfy the constraints S <: T <: U . Thus, the argument type embodies a form of evidence that the

assumption S <: U used to type-check the function body is actually valid.

More generally, given a term t of type {A : S ..U }, we can rule out the possibility of bad bounds

caused by the use of a dependent type t .A if there exists some object with the same type {A : S ..U }.
This is because the object must bind the type member A to some concrete type T respecting the

subtyping constraints S <: T and T <: U , so the object is evidence that S <: U .

Existing DOT calculi ensure that whenever some variable x of type T is in scope in some term t ,
the term reduces only after x has already been assigned a value. The value assigned to x is evidence

that T does not have bad bounds. To ensure that any code that uses the type x .A executes only

after x has been bound to a value of a compatible type, DOT employs a strict operational semantics.

A variable x can be introduced by one of the three binding constructs: let x = t in u, λ(x : T ) t , or
ν (x : T )d . In the first case, x is in scope within u, and the reduction semantics requires that before u
can execute, t must first reduce to a value with the same type as x . In the second case, x is in scope

within t , which cannot execute until an argument value is provided for the parameter x . In the

third case, the object itself is bound to the self variable x . In summary, the semantics ensures that

by the time when evaluation reaches a context with x in scope, x is bound to a value, and therefore

x ’s type does not introduce bad bounds.

The issue of bad bounds has been discussed thoroughly in many of the previous papers about

DOT [Amin et al. 2016, 2012, 2014; Rapoport et al. 2017].

2.3.2 Naive Path Extension Leads to Bad Bounds. When we extend the type system with types p.A
that depend on paths rather than variables, we must take similar precautions to control bad bounds.

If a path p has type {A : S ..U } and some normal form n also has this type, then n must be an object

that binds to type member A a type T such that S <: T <: U .

However, not all syntactic paths in DOT have this property. For example, in an object ν (x ) {a = t },
where t can be an arbitrary term, t could loop instead of reducing to a normal form of the same

type. In that case, there is no guarantee that a value of the type exists, and it would be unsound to

allow the path x .a as the prefix of a path-dependent type x .a.A.
The following example, in which a function x .b is typed as an object (a record with field c),

demonstrates this unsoundness (the Scala version cannot be typechecked):

ν (x :

{
a :
{
C : (∀(y : ⊤)⊤).. {c : ⊤}

}}
∧ {b : {c : ⊤}})

{a = x .a } ∧
{
b = λ (y : ⊤) y

} new { lazy val a: {type C >: Any⇒ Any <: {val c : Any}} = a

lazy val b: {val c : Any} = (y: Any)⇒ y }

Here, x .b refers to a function λ(y : ⊤)y of type ∀(y : ⊤)⊤. If we allowed such a definition, the

following would hold: ∀(y : ⊤)⊤ <: x .a.C <: {c : ⊤}. Then by subsumption, x .b, a function, has
type {c : ⊤} and therefore it must be an object. To avoid this unsoundness, we have to rule out the

type selection x .a.C on the non-terminating path x .a.
In general, if a path p has a field declaration type {a : T }, then the extended path p.a has type T ,

but we do not know whether there exists a value of type T because p.a has not yet reduced to a

variable. Therefore, the type T could have bad bounds, and we should not allow the path p.a to be

used in a path-dependent type p.a.A.
The main difficulty we encountered in designing pDOT was to ensure that type selections occur

only on terminating paths while ensuring that the calculus still permits non-terminating paths in

general, since that is necessary to express recursive functions and maintain Turing completeness

of the calculus.
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3 MAIN IDEAS
In this Section, we outline the main ideas that have shaped our definition of pDOT. The pDOT

calculus that implements these ideas in full detail will be presented in Section 4.

3.1 Paths Instead of Variables
To support fully-path-dependent types, our calculus needs to support paths in all places where

DOT permitted variables. Consider the following example:

let x = ν (y ) {a = ν (z ) {B = U } } in x .a val x = new { val a = new { type B = U }}; x .a

In order to make use of the fact that U <: x .a.B <: U , we need a type rule that reasons about

path-dependent types. In DOT, this is done through the Sel-<:
DOT

and <:-Sel
DOT

rules mentioned

in Section 2.3.1. Since we need to select B on a path x .a and not just on a variable x , we need to

extend the rules (merged into one here for brevity) to support paths:

Γ ⊢ x : {A : S ..T }
Γ ⊢ S <: x .A <: T

(<:-Sel-<:
DOT

) ⇒ Γ ⊢ p : {A : S ..T }

Γ ⊢ S <: p .A <: T
(<:-Sel-<:)

However, before we can use this rule we need to also generalize the recursion elimination

rule Rec-E
DOT

. In the above example, how do we obtain the typing Γ ⊢ x .a : {B : U ..U }? The only
identifier of the inner object is x .a, a path. The type of the path is µ (z : {B : U ..U }). In order to use

the type member B, it is necessary to specialize this recursive type, replacing the recursive self

variable z with the path x .a. This is necessary because the typeU might refer to the self variable z,
which is not in scope outside the recursive type. Thus, in order to support path-dependent types, it

is necessary to allow recursion elimination on objects identified by paths:

Γ ⊢ x : µ (y : T )

Γ ⊢ x : T [x/y]
(Rec-E

DOT
) ⇒ Γ ⊢ p : µ (y : T )

Γ ⊢ p : T
[
p/y

] (Rec-E)

By similar reasoning, we need to generalize all DOT variable-typing rules to path-typing rules.

3.2 Paths as Identifiers
A key design decision of pDOT is to let paths represent object identity. In DOT, object identity is

represented by variables, which works out because variables are irreducible. In pDOT, paths are

irreducible, because reducing paths would strip objects of their identity and break preservation.

3.2.1 Variables are Identifiers in DOT. In the DOT calculus by Amin et al. [2016], variables do not

reduce to values for two reasons:

– type safety: making variables irreducible is necessary to maintain preservation, and

– object identity: to access the members of objects (which can recursively reference the object

itself), objects need to have a name; reducing variables would strip objects of their identity.

If variables in DOT reduced to values, then in the previous example program, x would reduce to

v = ν (y) {a = ν (z) {B = U }}. To maintain type preservation, for any type T such that Γ ⊢ x : T ,
we also must be able to derive Γ ⊢ v : T . Since Γ ⊢ x : µ (y :

{
a : µ (z : {B : U ..U })

}
), by recursion

elimination Rec-E
DOT

, Γ ⊢ x :
{
a : µ (z : {B : U [x/y]..U [x/y]})

}
. Does v also have that type? No!

Γ ⊢ x : µ (y :
{
a : µ (z : {B : U ..U })

}
)

Γ ⊢ x :
{
a : µ (z : {B : U [x/y] ..U [x/y]})

} Rec-EDOT
γ : Γ

γ (x ) = v
γ | x 7−→ γ | v

Hypothetical VarDOT Reduction

Γ ⊢ v :

{
a : µ (z : {B : U [x/y] ..U [x/y]})

} preservation
DOT

The valuev has only the recursive type µ (y :
{
a : µ (z : {B : U ..U })

}
). Sincev is no longer connected

to any specific name, no recursion elimination is possible on its type. In particular, it does not make
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sense to give this value the type

{
a : µ (z : {B : U [x/y] ..U [x/y]})

}
because this type refers to x , but

after the reduction, the value is no longer associated with this name.

The example illustrates that in DOT, variables represent the identity of objects. This is necessary

in order to access an object’s members: object members can reference the object itself, for which

the object needs to have a name.

3.2.2 Paths are Identifiers in pDOT. In pDOT, paths represent the identity of objects and therefore

they must be irreducible. Similarly to DOT, reducing paths would lead to unsoundness and strip

nested objects of their identity. Making paths irreducible means that in pDOT, we cannot have an

analog of DOT’s field selection rule Proj
DOT

.

Consider the field selection x .a from the previous example. What is its type? By recursion

elimination, x .a has the type {B : U [x .a/z] ..U [x .a/z]}. If pDOT had a path-reduction rule Proj

analogous to DOT’s Proj
DOT

, then x .a would reduce to ν (z){B = U }. However, that value does not
have the type {B : U [x .a/z] ..U [x .a/z]}; it only has the recursive type µ (z : {B : U ..U }).

Γ ⊢ x .a : µ (z : {B : U ..U })
Γ ⊢ x .a : {B : U [x .a/z] ..U [x .a/z]}

Rec-E

γ : Γ

γ (x ) = ν (y ) {a = ν (z ) {B = U } }
γ | x .a 7−→ γ | ν (z ) {B = U }

Hypothetical Proj

Γ ⊢ ν (z ) {B = U } : {B : U [x .a/z] ..U [x .a/z]}
preservation

The reduction step from x .a to ν (z){B = U } caused the object to lose its name. Since the non-

recursive type of the term depends on the name, the loss of the name also caused the term to lose

its non-recursive type. This reduction step violates type preservation and type soundness.

3.2.3 Well-Typed Paths Don’t Go Wrong. If pDOT programs can return paths without reducing

them to values, could these paths be nonsensical? The type system ensures that they cannot. In

particular, we ensure that if a path p has a type then p either identifies some value, and looking

up p in the runtime configuration terminates, or p is a path that cyclically aliases other paths (see

below). Additionally, as we will see in Section 5.2.3, the pDOT safety proof ensures that if a path

has a function or object type, then it can be looked up to a value; if p can only be typed with a

singleton type (or ⊤), then the lookup will loop.

When we make paths a normal form, we also have to generalize DOT’s ANF syntax to use paths

wherever DOT uses variables. For example, function application has the form p q where p and q are

paths rather than x y where x and y are variables. As a result, all the DOT reduction and typing

rules that operate on variables are generalized to paths in pDOT.

3.3 Path Replacement
We introduce a path replacement operation for types that contain paths which reference the same

object. If a path q is assigned to a path p then q aliases p. In the tree example from Section 1, t3
aliases t2, but t1 does not alias t2, even though they identify syntactically equal objects.

If q is an alias of p we want to ensure that we can use q in the same way as p. For example,

any term that has type T → p.A should also have the type T → q.A, and vice versa. In pDOT, we

achieve this by introducing a subtyping relationship between equivalent types: if p and q are aliases,

and a type T can be obtained from typeU by replacing instances of p inU with q then T andU are

equivalent. For example, T → q.A can be obtained from T → p.A by replacing p with q, and these

types are therefore equivalent. We will precisely define the replacement operation in Section 4.2.

3.4 Singleton Types
To keep track of path aliases in the type system we use singleton types.

Suppose that a pDOT program assigns the path q to p, and that a type T can be obtained from U
by replacing an instance of p with q. How does the type system know that T andU are equivalent?
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We could try passing information about the whole program throughout the type checker. However,

that would make reasoning about types depend on reasoning about values, which would make

typechecking more complicated and less modular [Rapoport et al. 2017].

Instead, we ensure that the type system keeps track of path aliasing using singleton types, an

existing Scala feature. A singleton type of a path p, denoted p.type, is a type that is inhabited only

with the value that is represented by p. In the tree example from Section 1, to tell the type system

that t3 aliases t2, we ensure that t3 has the singleton type t2.type. This information is used to allow

subtyping between aliased paths, and to allow such paths to be typed with the same types, as we

will see in Section 4.2.

In pDOT, singleton types are an essential feature that is necessary to encode fully path-dependent

types. However, this makes pDOT also the first DOT formalization of Scala’s singleton types. In

Section 6, we show a pDOT encoding of an example that motivates this Scala feature.

3.5 Distinguishing Fields and Methods
Scala distinguishes between fields (vals, immutable fields that are strictly evaluated at the time of

object initialization) and methods (defs, which are re-evaluated at each invocation). By contrast,

DOT unifies the two in the concept of a term member. Since the distinction affects which paths

are legal in Scala, we must make some similar distinction in pDOT. Consider the following Scala

program:

val x = new {

val a: { type A } = ta
def b: { type B } = tb }

val y: x .a .A

val z : x.b.B

Scala allows path-dependent types only on stable paths [Documentation 2018]. A val can be a part

of a stable path but a def cannot. Therefore, the type selection x.a.A is allowed but x.b.B is not.

DOT unifies the two concepts in one:

let x = ν (x ) {a = ta } ∧ {b = tb } in . . .

However, this translation differs from Scala in the order of evaluation. Scala’s fields, unlike DOT’s,

are fully evaluated to values when the object is constructed. Therefore, a more accurate translation

of this example would be as follows:

let a′ = ta in

let x = ν (x )
{
a = a′

}
∧ {b = λ (_). tb } in . . .

This translation highlights the fact that although Scala can initialize x.a to an arbitrary term, that

term will be already reduced to a value before evaluation reaches a context that contains x. The
reason is that the constructor for x will strictly evaluate all of x’s val fields when x is created.
To model the fact that Scala field initializers are fully evaluated when the object is constructed,

we require field initializers in pDOT to be values or paths, rather than arbitrary terms. We use the

name stable term for a value or path.

This raises the question of how to model a Scala method such as b. A method can still be

represented by making the delayed evaluation of the body explicit: instead of initializing the field b
with the method body itself, we delay the body inside a lambda abstraction. The lambda abstraction,

a value, can be assigned to the field b. The body of the lambda abstraction can be an arbitrary term;

it is not evaluated during object construction, but later when the method is called and the lambda

is applied to some dummy argument.
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3.6 Precise Self Types
DOT allows powerful type abstractions, but it demands objects as proof that the type abstractions

make sense. An object assigns actual types to its type members and thus provides concrete evidence

for the declared subtyping relationships between abstract type members. To make the connection

between the object value and the type system, DOT requires the self type in an object literal to

precisely describe the concrete types assigned to type members, and we need to define similar

requirements for self types in pDOT.

In the object ν (x : {A : T ..T }) {A = T }, DOT requires the self-type to be {A : T ..T } rather than
some wider type {A : S ..U }. This is not merely a convenience, but it is essential for soundness.

Without the requirement, DOT could create and type the object ν (x : {A : ⊤..⊥}) {A = T }, which
introduces the subtyping relationship ⊤ <: ⊥ and thus makes every type a subtype of every other

type. Although we can require the actual assigned type T to respect the bounds (i.e. ⊤ <: T <: ⊥),
such a condition is not sufficient to prohibit this object. The assigned type T and the bounds (⊤

and ⊥ in this example) can in general depend on the self variable, and thus the condition makes

sense only in a typing context that contains the self variable with its declared self type. But in

such a context, we already have the assumption that ⊤ <: x .A <: ⊥, so it holds that ⊤ <: T (since

⊤ <: x .A <: ⊥ <: T ) and similarly T <: ⊥.
In pDOT, a path-dependent type p.A can refer to type members not only at the top level, but

also deep inside the object. Accordingly, we need to extend the precise self type requirement to

apply recursively within the object, as follows:

(1) An object containing a type member definition {A = T } must declare A with tight bounds,

using {A : T ..T } in its self type.

(2) An object containing a definition {a = ν (x : T )d } must declare a with the recursive type

µ (x : T ), using
{
a : µ (x : T )

}
in its self type.

(3) An object containing a definition {a = λ(x : T )U } must declare a with a function type, using

{a : ∀(x : S )V } in its self type.

(4) An object containing a definition

{
a = p

}
must declare a with the singleton type p.type, using{

a : p.type
}
in its self type.

The first requirement is the same as in DOT. The second and third requirements are needed for

soundness of paths that select type members from deep within an object. The fourth requirement

is needed to prevent unsoundness in the case of cyclic references. For example, if we were to allow

the object ν (x : {a : {A : ⊤..⊥}}) {a = x .a} we would again have ⊤ <: ⊥. The fourth requirement

forces this object to be declared with a precise self type: ν (x :
{
a : x .a.type

}
) {a = x .a}. Now, x .a no

longer has the type {A : ⊤..⊥}, so it no longer collapses the subtyping relation. The precise typing

thus ensures that cyclic paths can be only typed with singleton types but not function or object

types, and therefore we cannot have type or term selection on cyclic paths.

Although both DOT and pDOT require precision in the self type of an object, the object itself

can be typed with a wider type once it is assigned to a variable. For example, in DOT, if we have

let x = ν (x : {A : T ..T }) {A = T } in . . .

then x also has the wider type {A : ⊥..⊤}. Similarly, in pDOT, if we have

let x = ν (x :
{
a : µ (y : {b : ∀(z : T )U }) ∧

{
c : x .a .b .type

}}
)d in . . .

then x also has all of the following types: {a : {b : ∀(z : T )U }},
{
a : µ (y : {b : ⊤})

}
,

{
c : x .a.b .type

}
,

and {c : ∀(z : T )U }. In fact, the typings for this object in pDOT are more expressive than in DOT.

Because DOT does not open types nested inside of field declarations, DOT cannot assign the first

two types to x . In Section 4.2, we show one simple type rule that generalizes pDOT to open and

abstract types of term members nested deeply inside an object. In Section 6, we encode several
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x, y, z Variable

a, b, c Term member

A, B, C Type member

p, q, r B Path

x variable

p .a field selection

t, u B Term

s stable term

p q application

let x = t in u let binding

s B Stable Term

p path

v value

v B Value

ν (x : T )d object

λ (x : T ) t lambda

d B Definition

{a = s } field definition

{A = T } type definition

d ∧ d ′

aggregate definition

S, T , U , V B Type

⊤ top type

⊥ bottom type

{a : T } field declaration

{A : S ..T }
type declaration

S ∧T intersection

µ (x : T ) recursive type

∀(x : S )T
depend. function

p .A type projection

p .type singleton type

Fig. 1. Abstract syntax of pDOT

examples from previous DOT papers in pDOT and show that the real-world compiler example from

Section 1 that uses types depending on long paths can be encoded in pDOT as well.

In summary, both DOT and pDOT require the self type in an object literal to precisely describe

the values in the literal, but this does not limit the ability to ascribe a more abstract type to the

paths that identify the object.

4 FROM DOT TO PDOT
The pDOT calculus generalizes DOT by allowing paths wherever DOT allows variables (except in

places where variables are used as binders, such as x in λ(x : T ) t ).

4.1 Syntax
Figure 1 shows the abstract syntax of pDOT which is based on the DOT calculus of Amin et al.

[2016]. Differences from that calculus are indicated by shading.

The key construct in pDOT is a path, defined to be a variable followed by zero or more field

selections (e.g. x .a.b .c). pDOT uses paths wherever DOT uses variables. In particular, field selections

x .a and function application x y are done on paths: p.a and p q. Most importantly, pDOT also

generalizes DOT’s types by allowing path-dependent types p.A on paths rather than just on

variables. Additionally, as described in Section 3.4, the pDOT calculus formalizes Scala’s singleton

types. A singleton type p.type is inhabited with only one value: the value that is assigned to the

path p. A singleton type thus indicates that a term designates the same object as the path p. Just as
a path-dependent type p.A depends on the value of p, a singleton type q.type depends on the value

of q. Singleton types are therefore a second form of dependent types in the calculus.

4.2 pDOT Typing Rules
The typing and subtyping rules of pDOT are shown in Figure 2. The type system is based on the

DOT of Amin et al. [2016], and all changes are highlighted in gray.

4.2.1 From Variables to Paths. The first thing to notice in the pDOT typing and subtyping rules is

that all variable-specific rules, except Var, are generalized to paths, as motivated in Section 3.1.

The key rules that make DOT and pDOT interesting are the type-selection rules <:-Sel and Sel-<:.

These rules enable us to make use of the type member in a path-dependent type. When a path p
has type {A : S ..U }, the rules introduce the path-dependent type p.A into the subtyping relation

by declaring the subtyping constraints S <: p.A and p.A <: U . Thanks to these two rules, pDOT

supports fully path-dependent types.
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Γ F ∅ | Γ, x : T Type environment

Term typing
Γ(x ) = T
Γ ⊢ x : T

(Var)

Γ, x : T ⊢ t : U x < fv(T )

Γ ⊢ λ (x : T ) t : ∀(x : T )U
(All-I)

Γ ⊢ p : ∀(z : S )T Γ ⊢ q : S

Γ ⊢ p q : T [q/z]
(All-E)

x ; Γ, x : T ⊢ d : T
Γ ⊢ ν (x : T )d : µ (x : T )

({}-I)

Γ ⊢ p : {a : T }

Γ ⊢ p .a : T
(Fld-E)

Γ ⊢ p .a : T
Γ ⊢ p : {a : T } (Fld-I)

Γ ⊢ t : T
Γ, x : T ⊢ u : U x < fv(U )

Γ ⊢ let x = t in u : U
(Let)

Γ ⊢ p : q .type Γ ⊢ q : T
Γ ⊢ p : T

(Sngl-Trans)

Γ ⊢ p : q .type Γ ⊢ q .a
Γ ⊢ p .a : q .a .type (Sngl-E)

Γ ⊢ p : T
[
p/x

]

Γ ⊢ p : µ (x : T )
(Rec-I)

Γ ⊢ p : µ (x : T )

Γ ⊢ p : T
[
p/x

] (Rec-E)

Γ ⊢ p : T Γ ⊢ p : U

Γ ⊢ p : T ∧U
(&-I)

Γ ⊢ t : T Γ ⊢ T <: U
Γ ⊢ t : U

(Sub)

Definition typing
p ; Γ ⊢ {A = T } : {A : T ..T } (Def-Typ)

Γ ⊢ λ (x : T ) t : ∀(x : U )V
p ; Γ ⊢ {a = λ (x : T ) t } : {a : ∀(x : U )V } (Def-All)

p .a; Γ ⊢ d [p .a/y] : T [p .a/y] tightT
p ; Γ ⊢

{
a = ν (y : T )d

}
:

{
a : µ (y : T )

} (Def-New)

Γ ⊢ q
p ; Γ ⊢

{
a = q

}
:

{
a : q .type

} (Def-Path)

p ; Γ ⊢ d1 : T1 p ; Γ ⊢ d1 : T2
dom(d1 ), dom(d2 ) disjoint
p ; Γ ⊢ d1 ∧ d2 : T1 ∧T2

(AndDef-I)

Typeable paths

Γ ⊢ p : T
Γ ⊢ p (Wf)

Tight bounds

tightT =




U = V if T = {A : U ..V }
tightU if T = µ (x : U ) or {a : U }
tightU and tightV if T = U ∧V
true otherwise

Subtyping
Γ ⊢ T <: ⊤ (Top)

Γ ⊢ ⊥ <: T (Bot)

Γ ⊢ T <: T (Refl)

Γ ⊢ S <: T Γ ⊢ T <: U
Γ ⊢ S <: U

(Trans)

Γ ⊢ T ∧U <: T (And1-<:)

Γ ⊢ T ∧U <: U (And2-<:)

Γ ⊢ S <: T Γ ⊢ S <: U
Γ ⊢ S <: T ∧U

(<:-And)

Γ ⊢ T <: U
Γ ⊢ {a : T } <: {a : U }

(Fld-<:-Fld)

Γ ⊢ S2 <: S1 Γ ⊢ T1 <: T2
Γ ⊢ {A : S1 ..T1 } <: {A : S2 ..T2 }

(Typ-<:-Typ)

Γ ⊢ p : {A : S ..T }

Γ ⊢ S <: p .A
(<:-Sel)

Γ ⊢ p : q .type Γ ⊢ q
Γ ⊢ T <: T [q/p]

(Snglpq -<:)

Γ ⊢ p : q .type Γ ⊢ q
Γ ⊢ T <: T [p/q]

(Snglqp -<:)

Γ ⊢ p : {A : S ..T }

Γ ⊢ p .A <: T
(Sel-<:)

Γ ⊢ S2 <: S1
Γ, x : S2 ⊢ T1 <: T2

Γ ⊢ ∀(x : S1 )T1 <: ∀(x : S2 )T2
(All-<:-All)

Fig. 2. pDOT typing and subtyping

4.2.2 Object Typing. Similarly to the DOT calculus, the {}-I rule gives an object ν (x : T )d with

declared type T which may depend on the self variable x the recursive type µ (x : T ). The rule also
checks that the definitions d of the object actually do have type T under the assumption that the

self variable has this type. The object’s definitions d are checked by the Definition typing rules.

As discussed in Section 3.6, the rules assign a precise self type for objects, ensuring that paths are

declared with singleton types, functions with function types, and objects with object types. For
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objects, the tightT condition ensures that all type members that can be reached by traversing T ’s
fields have equal bounds, while still allowing arbitrary bounds in function types.

A difference with DOT is that pDOT’s definition-typing judgment keeps track of the path that

represents an object’s identity. When we typecheck an outermost object that is not nested in

any other object, we use the {}-I rule. The rule introduces x as the identity for the object and

registers this fact in the definition-typing judgment. To typecheck an object that is assigned to

a field a of another object p we use the Def-New rule. This rule typechecks the object’s body

assuming the object identity p.a and replaces the self-variable of the object with that path. The

definition-typing judgment keeps track of the path to the definition’s enclosing object starting

from the root of the program. This way the type system knows what identities to assign to

nested objects. For example, when typechecking the object assigned to x .a in the expression

let x = ν (x )
{
a = ν (y)

{
b = y.b

}}
in . . . , we need to replace y with the path x .a:

Γ, x :
{
a : µ (y :

{
b : y .b .type

}
)
}
⊢ x .a

x .a; Γ, x :
{
a : µ (y :

{
b : y .b .type

}
)
}
⊢ {b = x .a .b } :

{
b : x .a .b .type

} Def-Path

tight
{
b : y .b .type

}
x ; Γ, x :

{
a : µ (y :

{
b : y .b .type

}
)
}
⊢
{
a = ν (y )

{
b = y .b

}}
:

{
a : µ (y :

{
b : y .b .type

}
)
} Def-New

Γ ⊢ ν (x )
{
a = ν (y )

{
b = y .b

}}
: µ (x :

{
a : µ (y :

{
b : y .b .type

}
)
}
)

{}-I

An alternative design of the Def-New rule can be to introduce a fresh variable y into the context

(similarly to the {}-I rule). However, we would have to assign y the type x .a.type to register the

fact that these two paths identify the same object. We decided to simplify the rule by immediately

replacing the nested object’s self variable with the outer path to avoid the indirection of an additional

singleton type.

4.2.3 Path Alias Typing. In pDOT singleton-type related typing and subtyping rules are responsible

for the handling of aliased paths and equivalent types.

Singleton Type Creation. How does a path p obtain a singleton type? A singleton type indicates

that in the initial program, a prefix of p (which could be all of p) is assigned a path q. For example,

in the program let x = ν (x :
{
a : x .type

}
∧ {b : S }) {a = x } ∧ {b = s} in . . . , the path x .a should

have the type x .type because x .a is assigned the path x . The singleton type for x .a can be obtained

as follows. Suppose that in the typing context of the let body, x is mapped to the type of its

object, µ (x :
{
a : x .type

}
∧ {b : S }). Through applying recursion elimination (Rec-E), field selection

(Fld-E), and finally subsumption (Sub) with the intersection subtyping rule And1-<:, we will obtain
that Γ ⊢ x .a : x .type.
In the above example, x .a aliases x , so anything that we can do with x we should be able to do

with x .a. Since x has a field b and we can create a path x .b, we want to be also able to create a path
x .a.b. Moreover, we want to treat x .a.b as an alias for x .b. This is done through the Sngl-E rule:

it says that if p aliases q, and q.a has a type (denoted with Γ ⊢ q.a), then p.a aliases q.a. This rule
allows us to conclude that Γ ⊢ x .a.b : x .b .type.

Singleton Type Propagation. In the above example we established that the path x .a.b is an alias

for x .b. Therefore, we want to be able to type x .a.b with any type with which we can type x .b. The
Sngl-Trans rule allows us to do just that: if p is an alias for q, then we can type p with any type

with which we can type q. Using that rule, we can establish that Γ ⊢ x .a.b : S because Γ ⊢ x .b : S .

Equivalent Types. As described in Section 3.3, we call two types equivalent if they are equal up

to path aliases. We need to ensure that equivalent types are equivalent by subtyping, i.e. that they

are subtypes of each other. For example, suppose that Γ ⊢ p : q.type, and the path r refers to an

object ν (x )
{
a = p

}
∧
{
b = p

}
. Then we want to be able to type r with all of the following types:{

a : p .type
}
∧
{
b : p .type

} {
a : p .type

}
∧
{
b : q .type

} {
a : q .type

}
∧
{
b : q .type

} {
a : q .type

}
∧
{
b : p .type

}
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The pDOT subtyping rules Snglpq-<: and Snglqp -<: allow us to assign these types to r by estab-

lishing subtyping between equivalent types. Specifically, if we know that Γ ⊢ p : q.type then the

rules allow us to replace any occurrence of p in a type T with q, and vice versa, while maintaining

subtyping relationships in both directions.

We express that two types are equivalent using the replacement operation. The operation is

similar to the substitution operation, except that we replace paths with paths instead of variables

with terms, and we replace only one path at a time rather than all of its occurrences. The statement

T [q/p] = U denotes that the type T contains one or more paths that start with p, e.g. p.b1, . . . , p.bn ,

and that exactly one of these occurrences p.bi is replaced with q.bi , yielding the type U . Note that

it is not specified exactly in which occurrence of the above paths the prefix p is replaced with q.
The precise definition of the replacement operation is presented in Figure 9 in the Appendix.

Given the path r from the above example, we can choose whether to replace the first or second

occurrence of p with q; for example, we can derive

. . .

Γ ⊢ r :
{
a : p .type

}
∧
{
b : p .type

} Rec-E

Γ ⊢ p : q .type
. . .{

a : p .type
}
∧
{
b : p .type

}
[q/p] =

{
a : p .type

}
∧
{
b : q .type

} Repl-And2

Γ ⊢
{
a : p .type

}
∧
{
b : p .type

}
<:
{
a : p .type

}
∧
{
b : q .type

} Snglpq -<:

Γ ⊢ r :
{
a : p .type

}
∧
{
b : q .type

} Sub

To replace several occurrences of a path with another, we repeatedly apply Snglpq-<: or Snglqp -<:.

4.2.4 Abstracting Over Field Types. Finally, we describe one of the most interesting pDOT rules

which adds significant expressivity to pDOT.

Consider a function f = λ(x : {a : T }) . . . and a path p that refers to the object ν (x :
{
a : q.type

}
){

a = q
}
, where Γ ⊢ q : T . Since Γ ⊢ p : µ (x :

{
a : q.type

}
), by Rec-E, Γ ⊢ p :

{
a : q.type

}
, assuming

that q does not start with x . Therefore, since Γ ⊢ q : T , we would like to be able to pass p into the

function f which expects an argument of type {a : T }. Unfortunately, the typing rules so far do

not allow us to do that because although q has type T , q.type is not a subtype of T , and therefore{
a : q.type

}
is not a subtype of {a : T }.

The type rule Fld-I allows us to bypass that limitation. If a path p has a record type {a : T } (and
therefore Γ ⊢ p.a : T ), then the rule lets us type p with any type {a : U } as long as p.a can be typed

withU .

For the above example, we can prove that Γ ⊢ p : {a : T } and pass it into f as follows:

Γ ⊢ p :
{
a : q .type

}
Γ ⊢ p .a : q .type

Fld-E

Γ ⊢ q : T
Γ ⊢ p .a : T

Sngl-Trans

Γ ⊢ p : {a : T }
Fld-I

The Fld-I rule allows us to eliminate recursion on types that are nested inside fields, which is

not possible in DOT. If a DOT function f expects a parameter of type

{
a : µ (x : T )

}
, then in DOT,

we cannot pass a variable y of type

{
a : µ (x : T ∧U )

}
or a variable z of type {a : T [z .a/x]} into f

because there is no subtyping between recursive types, and there is no subtyping relationship

between µ (x : T ) and T [z .a/x] (and the latter type might not exist in the first place due to the lack

of fully-path-dependent types). All of the above is possible in pDOT because both y.a and z.a can

be typed with µ (x : T ), which allows us to use the Fld-I rule and type y and z as
{
a : µ (x : T )

}
.

4.3 Reduction Semantics
The operational semantics of pDOT is presented in Figure 3. pDOT’s reduction rules mirror the

DOT rules with three distinctions:

– paths everywhere: wherever DOT uses (as opposed to defines) variables, pDOT uses paths;
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γ (x ) = ν (x : T ) . . . {a = t } . . .
γ | x .a 7−→ γ | t

(ProjDOT)

γ F ∅ | γ , x 7→ v Store

γ (x ) = λ (z : T ) t

γ | x y 7−→ γ | t [y/z]
(ApplyDOT)

γ ⊢ p {∗ λ (z : T ) t

γ | p q 7−→ γ | t [q/z]
(Apply)

γ | let x = y in t 7−→ γ | t [y/x] (Let-VarDOT) γ | let x = p in t 7−→ γ | t
[
p/x

]
(Let-Path)

x < dom(γ )
γ | let x = v in t 7−→ γ , x 7→ v | t

(Let-ValueDOT)

x < dom(γ )
γ | let x = v in t 7−→ γ , x 7→ v | t

(Let-Value)

γ | t 7−→ γ ′ | t ′

γ | let x = t in u 7−→ γ ′ | let x = t ′ in u
(CtxDOT)

γ | t 7−→ γ ′ | t ′

γ | let x = t in u 7−→ γ ′ | let x = t ′ in u
(Ctx)

Fig. 3. Operational semantics of DOT and pDOT

γ (x ) = v
γ ⊢ x { v (Lookup-Step-Var)

γ ⊢ p { ν (x : T ) . . . {a = s } . . .
γ ⊢ p .a { s [p/x]

(Lookup-Step-Val)

γ ⊢ p { q
γ ⊢ p .a { q .a (Lookup-Step-Path)

γ ⊢ s {∗ s (Lookup-Refl)
γ ⊢ s1 { s2 γ ⊢ s2 {∗ s3

γ ⊢ s1 {∗ s3
(Lookup-Trans)

Fig. 4. Value-environment path lookup

– no Proj
DOT

: there is no reduction rule for field projection because in pDOT, paths are normal

form (as motivated in Section 3.2.2);

– path lookup: pDOT uses the reflexive, transitive closure of the path lookup operation{ that

generalizes variable lookup in value environments to paths.

The path lookup operation is presented in Figure 4. This operation allows us to look up a value

that is nested deeply inside an object. If a path is a variable the lookup operation is a straight-

forward variable lookup (Lookup-Step-Var). If in a value environment γ , a path p is assigned

an object ν (x ) {a = s} then γ ⊢ p.a { s [p/x] because the self variable x in s gets replaced with p
(Lookup-Step-Val). If p is equal to another path q then γ ⊢ p.a { q.a (Lookup-Step-Path).

Finally, we want to be able to follow a sequence of paths in a value environment: for example, if

γ ⊢ p { q and γ ⊢ q { v , we want to conclude that looking up p yields v . This is done through
the reflexive, transitive closure{∗ of the{ relation (Lookup-Refl and Lookup-Trans).

For example, looking up x .a.c in the environment γ = (y, ν (y ′){b = ν (y ′′){c = λ(z : ⊤) z}})),
(x , ν (x ){a = y.b}) yields λ(z : ⊤) z:

γ (x ) = ν (x ) {a = y .b } γ (y ) = ν (y′) {b = ν (y′′) {c = λ (z : ⊤) z } }

γ ⊢ x {ν (x ) {a = y .b } γ ⊢y {ν (y′) {b = ν (y′′) {c = λ (z : ⊤) z } }

γ ⊢ x . a { y .b γ ⊢y . b {ν (y′′) {c = λ (z : ⊤) z }

γ ⊢ x . a .c {y .b .c γ ⊢y . b . c {λ (z : ⊤) z
γ ⊢ x .a .c {∗ λ (z : ⊤) z

The reduction rule that uses the lookup operation is the function application rule Apply: to

apply p to q we must be able to look up p in the value environment and obtain a function. Since

pDOT permits cycles in paths, does this mean that the lookup operation for this type rule might

not terminate? Fortunately, pDOT’s type safety ensures that this will not happen. As shown in
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Section 5.2.3, if Γ ⊢ p : ∀(T : U ) then lookup of p eventually terminates and results in a function

value. Therefore, a function application p q always makes progress.

5 TYPE SAFETY
We implemented the type-safety proof of pDOT in Coq as an extension of the simple DOT soundness

proof by Rapoport et al. [2017]. Compared to the 2,051 LOC, 124 lemmas and theorems, and 65

inductive or function definitions in the simple DOT proof, the pDOT Coq formalization consists of

7,343 LOC, 429 lemmas and theorems, and 115 inductive or function definitions. Our paper comes

with an artifact that presents the Coq formalization. A correspondence between the presentation

of pDOT and the proof in the paper, and the Coq mechanization is presented in Section ??. This
section presents an overview of the key challenges and insights of proving pDOT sound.

Type safety ensures that any well-typed pDOT program does not get stuck, i.e. it either diverges

or reduces to a normal form (a path or a value):

Theorem 5.1 (Type Soundness). If ⊢ t : T then either t diverges, i.e. there exists an infinite reduction
sequence ∅ | t 7−→ γ1 | t1 7−→ . . . 7−→ γn | tn 7−→ . . . starting with t , or t reduces to a normal

form s , i.e. ∅ | t 7−→∗ γ | s , and Γ ⊢ s : T for some Γ such that γ : Γ.

Since evaluating pDOT programs can result in paths (which are normal form), one might ask

whether looking up those paths yields anything meaningful. As mentioned in Section 3.2.3, looking

up any well-typed path in the runtime environment results either in a value or an infinite loop. To

formulate the final soundness theorem that reasons about both term reduction and path lookup we

define the following extended reduction relation ↠ :

γ | t 7−→ γ ′ | t ′

γ | t ↠ γ ′ | t ′
γ ⊢ s { γ ′s ′

γ | s ↠ γ ′ | s ′

We denote the reflexive, transitive closure of extended reduction ad ↠∗ . Finally, we state the
following extended soundness theorem:

Theorem 5.2 (Extended Type Soundness). If ⊢ t : T then either t diverges, i.e. there exists an
infinite reduction sequence ∅ | t ↠ γ1 | t1 ↠ . . . ↠ γn | tn ↠ . . . starting with t , or t reduces to
a value, i.e. ∅ | t ↠∗ γ | v .

Our proof follows the syntax-based approach to type soundness by Wright and Felleisen [1994].

The two central lemmas of the proof are Progress and Preservation:

Lemma 5.3 (Progress). Let γ be a value environment and Γ a typing environment. If i) γ : Γ (i.e.

if γ = (xi , vi ) then Γ = (xi , Ti ) and Γ ⊢ vi : Ti ), ii) Γ is inert (i.e. all types in Γ are the precise types

of values, see Section 5.2.2), iii) Γ is well-formed (i.e. all paths in the types of Γ are typeable in Γ,
see Section 5.2.1), and iv) Γ ⊢ t : T , then t is in normal form or there exists a term t ′ and a value

environment γ ′ such that γ | t 7−→ γ ′ | t ′.

Lemma 5.4 (Preservation). Let γ be a value environment and Γ a typing environment. If i) γ : Γ,
ii) Γ is inert, iii) Γ is well-formed, iv) Γ ⊢ t : T , and v) γ | t 7−→ γ ′ | t ′, then there exists an inert,

well-formed typing environment Γ′ such that γ ′ : Γ′ and Γ′ ⊢ t ′ : T .

The pDOT proof follows the design principles laid out by Rapoport et al. [2017] of separating

the reasoning about types, variables (paths), and values from each other to ensure modularity and

facilitate future extensions of DOT.

5.1 Main Ideas of the DOT Safety Proof
The DOT type-safety proof addresses two main challenges:
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inert ∀(x : T )U record T
inert µ (x : T )

record {A : T ..T } record

{
a : q .type

} inert T
record {a : T }

Fig. 5. Inert Types in pDOT

1) Rule out bad bounds: Although bad bounds give rise to DOT typing contexts in which undesirable

subtyping relationships hold, the proof needs to show that all reachable run-time states can be

typed in well-behaved contexts.

2) Induction on typing: The DOT typing rules are very flexible, mirroring intuitive notions about

which types a term ought to have. This flexibility requires rules that are opposites of each other

and thus admit cycles in a derivation. The possibility of cycles impedes inductive reasoning

about typing derivations.

The existing type safety proof defines a notion of inert types and typing contexts, a simple

syntactic property of types that rules out bad bounds. Specifically, an inert type must be either a

dependent function type or a recursive object type in which type members have equal bounds (i.e.

{A : T ..T } rather than {A : S ..U }). Crucially, the preservation lemma shows that reduction preserves

inertness: that is, when γ | t 7−→ γ ′ | t ′ there is an inert typing environment Γ′ that corresponds
to γ ′ and in which t ′ has the required type.

The proof also employs the proof recipe, a stratification of the typing rules into multiple typing

relations that rule out cycles in a typing derivation, but are provably as expressive as the general

typing relation under the condition of an inert typing context. In particular, besides the general

typing relation, the proof uses three intermediate relations: tight typing neutralizes the <:-Sel and
Sel-<: rules that could introduce bad bounds, invertible typing contains introduction rules that

create more complex types out of smaller ones, and precise typing contains elimination rules that

decompose a type into its constituents.

5.2 Type Safety: From DOT to pDOT
The challenges of adapting the DOT soundness proof to pDOT can be classified into three main

themes: adapting the notion of inert types to pDOT, adapting the stratification of typing rules to

pDOT, and adapting the canonical forms lemma to changes in the operational semantics in pDOT.

5.2.1 Inert Types in pDOT. The purpose of inertness is to prevent the introduction of a possibly

undesirable subtyping relationship between arbitrary types S <: U arising from the existence of a

type member that has those types as bounds. If a variable x has type {A : S ..U }, then S <: x .A and

x .A <: U , so by transitivity, S <: U .

A DOT type is inert if it is a function type or a recursive type µ (x : T ) where T is a record type.

A record type is either a type-member declaration with equal bounds {A : U ..U } or an arbitrary

field declaration {a : S }. In DOT, this is sufficient to rule out the introduction of new subtyping

relationships.

In pDOT, a new subtyping relationship S <: U arises when a path p, rather than only a variable x ,
has a type member {A : S ..U }. Therefore, the inertness condition needs to enforce equal bounds on

type members not only at the top level of an object, but recursively in any objects nested deeply

within the outermost object. Therefore, as shown in the inertness definition in Figure 5, a field

declaration {a : T } is inert only if the field typeT is also inert. Moreover, since pDOT adds singleton

types to DOT, the definition of a record type is also extended to allow a field to have a singleton type.

Both the DOT and pDOT preservation lemmas must ensure that reduction preserves inertness of

typing contexts, but pDOT also requires preservation of a second property, well-formedness of
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typing contexts. A pDOT type can depend on paths rather than only variables, and the type makes

sense only if the paths within it make sense; more precisely, well-formedness requires that any

path that appears in a type should itself also be typeable in the same typing context. Without this

property, it would be possible for the typing rules to derive types for ill-formed paths, and there

could be paths that have types but do not resolve to any value during program execution.

5.2.2 Stratifying Typing Rules in pDOT. The language features that pDOT adds to DOT also create

new ways to introduce cycles in a typing derivation. The stratification of the typing rules needs to

be extended to eliminate these new kinds of cycles.

The notion of aliased paths is inherently symmetric: if p and q are aliases for the same object,

then any term with type p.A also has type q.A and vice versa. This is complicated further because

the paths p and q can occur deeply inside some complex type, and whether a term has such a type

should be independent of whether the type is expressed in terms of p or q. A further complicating

factor is that a prefix of a path is also a path, which may itself be aliased. For example, if p is an

alias of q and q.a is an alias of r , then by transitivity, p.a should also be an alias of r .
The pDOT proof eliminates cycles due to aliased paths by breaking the symmetry. When p and

q are aliased, either Γ ⊢ p : q.type or Γ ⊢ q : p.type. The typing rules carefully distinguish these

two cases, so that for every pair p,q of aliased paths introduced by a typing declaration, we know

whether the aliasing was introduced by the declaration of p or of q.2 A key lemma then proves

that if we have any sequence of aliasing relationships p0 ∼ p1 ∼ · · · ∼ pn , where for each i , either
Γ ⊢ pi : pi+1.type or Γ ⊢ pi+1 : pi .type, we can reorder the replacements so that the ones of the

first type all come first and the ones of the second type all come afterwards. More precisely, we

can always find some “middle” path q such that Γ ⊢ p0 : q.type and Γ ⊢ pn : q.type.3 Therefore,
we further stratify the proof recipe into two typing judgments the first of which accounts for the

Snglpq-<: rule, and the second for the Snglqp -<: rule. This eliminates cycles in a typing derivation

due to aliased paths, but the replacement reordering lemma ensures that it preserves expressiveness.

Another new kind of cycle is introduced by the field elimination rule Fld-E and the field intro-

duction rule Fld-I that is newly added in pDOT. This cycle can be resolved in the same way as

other cycles in DOT, by stratifying these rules in two different typing relations.

The final stratification of the pDOT typing rules requires 7 typing relations rather than the 4

required in the soundness proof for DOT. General and tight typing serve the same purpose as in

the DOT proof, but pDOT requires three elimination and two introduction typing relations.

5.2.3 Canonical Forms in pDOT. Like many type soundness proofs, the DOT proof depends on

canonical forms lemmas that state that if a variable has a function type, then it resolves to a

corresponding function at execution time, and if it has a recursive object type, then it resolves to a

corresponding object. The change from DOT to pDOT involves several changes to Canonical Forms.

Two changes are implied directly by the changes to the operational semantics. The DOT canonical

forms lemmas apply to variables. Since the pDOT Apply reduction rule applies to paths rather than

variables, the canonical forms lemma is needed for paths. Since paths are normal forms in pDOT

and there is no Proj reduction rule for them, on the surface, pDOT needs a canonical forms lemma

only for function types but not for object types. However, to reason about a path with a function

type, we need to reason about the prefixes of the path, which have an object type. Therefore, the

induction hypothesis in the canonical forms lemma for function types must still include canonical

2
An exceptional case is when p is declared to have type q .type and q is declared to have type p .type. Fortunately, this case
of a cycle turns out to be harmless because neither path is declared to have any other type other than its singleton type, and

therefore neither path can be used in any interesting way.

3
In degenerate cases, the middle path q might actually be p0 or pn .
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forms for object types. Moreover, since pDOT adds singleton types to the type system, the induction

hypothesis needs to account for them as well.

A more subtle but important change is that lookup of a path in an execution environment is

a recursive operation in pDOT, and therefore its termination cannot be taken for granted. An

infinite loop in path lookup would be a hidden violation of progress for function application, since

the APPLY reduction rule steps only once path lookup has finished finding a value for the path.

Therefore, the canonical forms lemma proves that if a path has a function type, then lookup of

that path does terminate, and the value with which it terminates is a function of the required type.

The intuitive argument for termination requires connecting the execution environment with the

typing environment: if direct lookup of path p yields another path q, then the context assigns p the

singleton type q.type. But in order for p to have a function type, there cannot be a cycle of paths in

the typing context (because a cycle would limit p to have only singleton types), and therefore there

cannot be a cycle in the execution environment. The statement of the canonical forms lemma is:

Lemma 5.5. Let γ be a value environment and Γ be an inert, well-formed environment such that

γ : Γ. If Γ ⊢ p : ∀(x : T )U then there exists a type T ′ and a term t such that i) γ ⊢ p {∗λ(x : T ′) t , ii)
Γ ⊢ T <: T ′, and iii) Γ, x : T ⊢ t : U .

This simple statement hides an intricate induction hypothesis and a long, tedious proof, since it

needs to reason precisely about function, object, and singleton types and across all seven typing

relations in the stratification of typing.

6 EXAMPLES
In this section, we present three pDOT program examples that illustrate different features of the

calculus. All of the programs were formalized and typechecked in Coq.

To make the examples easier to read, we simplify the notation for objects ν (x : U )d by removing

type annotations where they can be easily inferred, yielding a new notation ν (x ⇒ d ′):

– a type definition {A = T } can be only typed with {A : T ..T }, so we will skip type declarations;

– in a definition

{
a = p

}
, the field a is assigned a path and can be only typed with a singleton

type; we will therefore skip the type

{
a : p.type

}
;

– in a definition {a = ν (x : T )d }, a is assigned an object that must be typed with µ (x : T ); since
we can infer T by looking at the object definitions, we will skip the typing

{
a : µ (x : T )

}
;

– we inline the type of abstractions into the field definition (e.g. {a : ∀(x : T )U = λ(x : T ) t }).
For readability we will also remove the curly braces around object definitions and replace the ∧
delimiters with semicolons. As an example for our abbreviations, the object

ν (x : {A : T ..T } ∧
{
a : p .type

}
∧
{
b : µ (y : U )

}
∧ {c : ∀(z : S )V })

{A = T } ∧
{
a = p

}
∧
{
b = ν (y : U )d

}
∧
{
c = λ (z : S ′) t

}
will be encoded as ν (x ⇒ A = T ; a = p; b = ν (y ⇒ d ′); c : ∀(z : S )V = λ(z : S ′) t ) where ν (y ⇒ d ′)
is the abbreviated version of ν (y : U )d .

6.1 Class Encodings
Fully path-dependent types allow pDOT to define encodings for Scala’s module system and classes,

as we will see in the examples below.

In Scala, declaring a class A(args) automatically defines both a type A for the class and a constructor

for A with parameters args. We will encode such a Scala class in pDOT as a type member A and a

method newA that returns an object of type A:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.



A Path To DOT 1:21

ν (p ⇒ A = µ (this : {foo : ∀(_)U }) ;
newA : ∀(x : U ) p .A = ν (this) {foo = λ (_). x })

package p { class A(x: U) {

def foo : U = x }}

To encode subtyping we use type intersection. For example, we can define a class B that extends A
as follows:

ν (p ⇒ B = p .A ∧ {C : ⊥..⊤} ;

newB : ∀(x : U ) p .B = ν (this) {foo = λ (_). x ; C = . . . })

package p { class B(x : U) extends A(x: U) {
type C }}

6.2 Lists
As an example to illustrate that pDOT supports the type abstractions of DOT we formalize the

covariant-list library by Amin et al. [2016] in pDOT, presented in Figure 6 a). The encoding defines

List as a data type with an element type A and methods head and tail. The library contains nil
and cons fields for creating lists. To soundly formalize the list example, we encode head and tail
as methods (defs) as opposed to vals by wrapping them in lambda abstractions, as discussed in

Section 3.5. This encoding also corresponds to the Scala standard library where head and tail are
defs and not vals, and hence one cannot perform a type selection on them.

By contrast, the list example by Amin et al. [2016] encodes head and tail as fields without wrapping
their results in functions. For a DOT that supports paths, such an encoding is unsound because

it violates the property that paths to objects with type members are acyclic. In particular, since

no methods should be invoked on nil, its head and tail methods are defined as non-terminating

loops, and nil’s element type is instantiated to ⊥. If we allowed nil.head to have type ⊥ then since

⊥ <: {A : ⊤..⊥}, we could derive ⊤ <: nil.head.A <: ⊥.

6.3 Mutually Recursive Modules
The second example, presented in Figure 6 b), illustrates pDOT’s ability to use path-dependent

types of arbitrary length. It formalizes the compiler example from Section 1 in which the nested

classes Type and Symbol recursively reference each other.

6.4 Chaining methods with singleton types
The last example focuses on pDOT’s ability to use singleton types as they are motivated by Odersky

and Zenger [2005]. An example from that paper introduces a class C with an incr method that

increments a mutable integer field and returns the object itself (this). A class D extends C and

defines an analogous decr method. By declaring the return types of the incr and decr methods as

singleton types, we can invoke a chain of method calls d .incr.decr on an object d of type D. If incr
were declared with type C this would not have been possible since C does not have a decr member.

Our formalization of the example is displayed in Figure 6 c). The original example contains a

class A that declares a mutable integer field x and a method incr that increases x and returns the

object itself. A class B extends A with an analogous decr method that decreases x . The example

shows how we can invoke a chain of incr and decr methods on an object of type B using singleton

types: if A.incr returned an object of type A this would be impossible, so the method’s return type

is this.type. Since pDOT does not support mutation, our example excludes the mutation side effect

of the original example which is there to make the example more practical.

7 RELATEDWORK
This section reviews the work related to formalizing Scala with support for fully path-dependent

types.
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a) A covariant list library in pDOT

ν (sci⇒ List = µ (self : {A : ⊥..⊤} ∧ {head : ∀(_) self .A} ∧ {tail : ∀(_) (sci.List ∧ {A : ⊥..self .A}) });

nil : ∀(x : {A : ⊥..⊤}) sci.List ∧ {A : ⊥..⊥}

= λ (x : {A : ⊥..⊤}) let result = ν (self ⇒ A = ⊥;

head : ∀(y : ⊤) self .A = λ (y : ⊤) self .heady ;

tail : ∀(y : ⊤) (sci.List ∧ self .A) = λ (y : ⊤) self .taily )

in result;

cons : ∀(x : {A : ⊥..⊤}) ∀(hd : x .A) ∀(tl : sci.List ∧ {A : ⊥..x .A}) sci.List ∧ {A : ⊥..x .A}

= λ (x : {A : ⊥..⊤}) λ (hd : x .A) λ (tl : sci.List ∧ {A : ⊥..x .A})

let result = ν (self ⇒ A = x .A;

head : ∀(_) self .A = λ_. hd

tail : ∀(_) (sci.List ∧ self .A) = λ_. tl)

in result)

b) Mutually recursive types in a compiler package: fully-path-dependent types

ν (dc⇒ types = ν (types⇒ Type = µ (this :
{
symb : dc.symbols.Symbol

}
) ;

newType : ∀(s : dc.symbols.Symbol) types.Type

= λ (s : dc.symbols.Symbol)

let result’ = ν (this⇒ symb = s ) in result’);

symbols = ν (symbols⇒ Symbol = µ (this :
{
tpe : dc.types.Type

}
) ;

newSymbol : ∀(t : dc.types.Type) symbols.Symbol

= λ (t : dc.types.Type)

let result’ = ν (this⇒ tpe = t ) in result’))

c) Chaining method calls using singleton types

let pkg = ν (p ⇒ C = µ (this :
{
incr : this.type

}
) ;

D = µ (this : p .C ∧
{
decr : this.type

}
) ;

newD : ∀(_) p .D = λ _.

let result = ν (this⇒ incr = this; decr = this)

in result)

in let d = pkg.newD _

in d .incr.decr

Fig. 6. Example pDOT encodings

7.1 Early Class-based Scala Formalizations
Several predecessors of the DOT calculus support path-dependent types on paths of arbitrary length.

The first Scala formalization, νObj [Odersky et al. 2003], is a nominal, class-based calculus with

a rich set of language features that formalizes object-dependent type members. Two subsequent

calculi, Featherweight Scala (FSalд) [Cremet et al. 2006] and Scalina [Moors et al. 2008], build on

νObj to establish Scala formalizations with algorithmic typing and with full support for higher-

kinded types. All three calculi support paths of arbitrary length, singleton types, and abstract

type members. Whereas FSalд supports type-member selection directly on paths, νObj and Scalina
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allow selection T #A on types. A path-dependent type p.A can thus be encoded as a selection on a

singleton type: p.type#A. νObj is the only of the above calculi that comes with a type-safety proof.

The proof is non-mechanized.

Both pDOT and these calculi prevent type selections on non-terminating paths. νObj achieves
this through a contraction requirement that prevents a term on the right-hand side of a definition

to refer to the definition’s self variable. At the same time, recursive calls can be encoded in νObj by
referring to the self variable from a nested class definition. FSalд ensures that paths are normalizing

through a cycle detection mechanism that ensures that a field selection can appear only once as

part of a path. Scalina avoids type selectionT #A on a non-terminating typeT by explicitly requiring

T to be of a concrete kind, which means that T expands to a structural type R that contains a type

member A. Although Scalina allows A to have upper and lower bounds, bad bounds are avoided

because A also needs to be immediately initialized with a type U that conforms to A’s bounds,
which is more restrictive than DOT. In pDOT, it is possible to create cyclic paths but impossible to

do a type selection on them because as explained in Section 3.6, cyclic paths that can appear in a

concrete execution context cannot be typed with a type-member declaration.

A difference between pDOT and the above calculi is that to ensure type soundness, paths in

pDOT are normal form. This is necessary to ensure that each object has a name, as explained

in Section 3.2.2. νObj and FSalд achieve type safety in spite of reducing paths by allowing field

selection only on variables. This way, field selections always occur on named objects. Scalina does

not require objects to be tied to names. In particular, its field selection rule E_Sel allows a field

selection newT .a on an object if T contains a field definition {a = s}. The selection reduces to

s [newT/this], i.e. each occurrence of the self variable is replaced with a copy of newT .
A second difference to pDOT is the handling of singleton types. In order to reason about a single-

ton type p.type, νObj, FSalд , and Scalina use several recursively defined judgments (membership,

expansion, and others) that rely on analyzing the shape and well-formedness of the type that p
expands to. By contrast, pDOT contains one simple Sngl-Trans rule that allows a path to inherit

the type of its alias. On the other hand, pDOT has the shortcoming that singleton typing is not

reflexive. Unlike in the above systems and in Scala, pDOT lacks a type axiom Γ ⊢ p : p.type. Such a

rule would undermine the anti-symmetry of path aliasing which is essential to the safety proof.

None of the other calculi have to confront the problem of bad bounds. Unlike DOT, pDOT, and

Scala, νObj and FSalд do not support lower bounds of type members and have no unique upper

and lower bounds on types. Scalina does have top and bottom types and supports bounds through

interval kinds, but it avoids bad bounds by requiring types on which selection occurs to be concrete.

In addition, it is unknown whether Scalina and FSalд are sound.

Finally, the three type systems are nominal and class based, and include a large set of language

features that are present in Scala. DOT is a simpler and smaller calculus that abstracts over many

of the design decisions of the above calculi. Since DOT aims to be a base for experimentation with

new language features, it serves well as a minimal core calculus for languages with type members,

and the goal of pDOT is to generalize DOT to fully path-dependent types.

7.2 DOT-like Calculi
Amin et al. [2012] present the first version of a DOT calculus. It includes type intersection, recursive

types, unique top and bottom types, type members with upper and lower bounds, and path-

dependent types on paths of arbitrary length. This version of DOT has explicit support for fields

(vals) and methods (defs). Fields must be initialized to variables, which prevents the creation of

non-terminating paths (since that would require initializing fields to paths), but it also limits

expressivity. Specifically, just like in DOT by Amin et al. [2016], path-dependent types cannot refer

to nested modules because modules have to be created through methods, and method invocations
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cannot be part of a path-dependent type. The calculus is not type-safe, as illustrated by multiple

counterexamples in the paper. In particular, this version of DOT does not track path equality which,

as explained in the paper, breaks preservation.

To be type-safe, DOT must ensure that path-dependent types are invoked only on terminating

paths. A possible strategy to ensure a sound DOT with support for paths is to investigate the

conditions under which terms terminate, and to impose these conditions on the paths that participate

in type selections. To address these questions, Wang and Rompf [2017] present a Coq-mechanized

semantic proof of strong normalization for the D<: calculus. D<: is a generalization of System F<:

with lower- and upper-bounded type tags and variable-dependent types. The paper shows that

recursive objects constitute the feature that enables recursion and hence Turing-completeness in

DOT. Since D<: lacks recursive objects, it is strongly normalizing. Furthermore, the lack of objects

and fields implies that this version of D<: can only express paths that are variables.

Hong et al. [2018] present πDOT, a strongly normalizing version of a D<: without top and bottom

types but with support for paths of arbitrary length. πDOT keeps track of path aliasing through

path-equivalence sets, and the paper also mentions the possibility of using singleton types to

formalize path equality. Like the calculus by Wang and Rompf [2017], this version of D<: is strongly

normalizing due to the lack of recursive self variables. This guarantees that paths are acyclic. It also

ensures that due to the lack of recursion elimination, reducing paths preserves soundness (unlike

in pDOT, as explained in Section 3.2.2). πDOT comes with a non-mechanized soundness proof.

By contrast with these two papers, our work proposes a Turing-complete generalization with

paths of arbitrary length of the full DOT calculus, which includes objects and type intersections.

7.3 Other Related Languages and Calculi
A type system that distinguishes types based on the runtime values of their enclosing objects was

first introduced by Ernst [2001] in the context of family polymorphism. Notably, family polymor-

phism is supported by virtual classes, which can be inherited and overriden within different objects

and whose concrete implementation is resolved at runtime. Virtual classes are supported in the Beta

and gbeta programming languages [Ernst 1999; Madsen and Møller-Pedersen 1989] and formalized

by the vc and tribe calculi [Clarke et al. 2007; Ernst et al. 2006]. By contrast, Scala does not support

the overriding of classes, which are statically resolved at compile time, and the DOT calculus is

simpler than vc and tribe since it does not model classes, inheritance, or mutation.

Scala’s module system shares many similarities with languages of the ML family. Earlier pre-

sentations of ML module systems [Dreyer et al. 2003; Harper and Lillibridge 1994; Leroy 1994]

present powerful module systems with fine-grained control over type abstractions and code reuse

but do not support mutually recursive modules, and separate the language of terms from the

language of modules. MixML extends the essential features of these type systems with recursion

and first-class modules [Rossberg and Dreyer 2013]. By translating an ML-style module language,

without recursive modules, into System Fω , Rossberg [2015]; Rossberg et al. [2014] show that many

features of ML type and module systems, known for their inherent complexity, can be encoded

in a small calculus. Rossberg [2015] presents 1ML, an expressive yet concise version of ML that

fully unifies the language of modules with the language of terms. The paper shows how 1ML can

be translated to Fω without the use of dependent types. Moreover, 1ML’s type system is decidable

and comes with a type-inference algorithm. However, unlike DOT, the language does not support

mutually recursive modules, and its type members cannot be declared with lower and upper bounds.

Finally, the translation from 1ML to System Fω is presented in the paper but is not mechanized.
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7.4 Decidability
The baseline DOT calculus to which we add the path extensions is widely conjectured to have

undecidable typechecking because it includes the features of F<:, for which typechecking is unde-

cidable [Pierce 1992]. Rompf and Amin [2016] give a mapping from F<: to D<:, a simpler calculus

than DOT, and prove that if the F<: term is typable then so is the D<: term, but the only-if direction

and therefore the decidability of D<: and DOT remain open problems, subject of active research.

The open question of decidability of DOT needs to be resolved before we can consider decidability

of pDOT.

We believe that pDOT does not introduce additional sources of undecidability into DOT. One

feature of pDOT that might call this into question is singleton types. In particular, Stone and Harper

[2006] study systems of singleton kinds that reason about types with non-trivial reduction rules,

yet it remains decidable which types reduce to the same normal form. The singleton types of both

Scala and pDOT are much simpler and less expressive in that only assignment of an object between

variables and paths is allowed, but the objects are not arbitrary terms and do not reduce. Thus,

the Scala and pDOT singleton types only need to track sequences of assignments. Thus, although

decidability of pDOT is unknown because it is unknown for DOT, the singleton types that we add

in pDOT are unlikely to affect decidability because they are significantly less expressive than the

singleton types studied by Stone and Harper.

8 CONCLUSION
The DOT calculus was designed as a small core calculus to model Scala’s type system with a focus

on path-dependent types. However, DOT can only model types that depend on variables, which

significantly under-approximates the behaviour of Scala programs. Scala and, more generally,

languages with type members need to rely on fully path-dependent types to encode the possible

type dependencies in their module systems without restrictions. Until now, it was unclear whether

combining the fundamental features of languages with path-dependent types, namely bounded

abstract type members, intersections, recursive objects, and paths of arbitrary length is type-safe.

This paper proposes pDOT, a calculus that generalizes DOT with support for paths of arbitrary

length. The main insights of pDOT are to represent object identity through paths, to ensure that

well-typed acyclic paths always represent values, to track path equality with singleton types, and

to eliminate type selections on cyclic paths through precise object typing. pDOT allows us to use

the full potential of path-dependent types. pDOT comes with a type-safety proof and motivating

examples for fully path-dependent types and singleton types that are mechanized in Coq.
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x, y, z Variable

a, b, c Term member

A, B, C Type member

t, u B Term

x variable

x .a field selection

v value

x y application

let x = t in u let binding

v B Value

ν (x : T )d object

λ (x : T ) t lambda

d B Definition

{a = t } field definition

{A = T } type definition

d ∧ d ′ aggregate definition

S, T , U B Type
⊤ top type

⊥ bottom type

{a : T } field declaration

{A : S ..T } type declaration

x .A type projection

S ∧T intersection

µ (x : T ) recursive type

∀(x : S )T
dependent function

Fig. 7. Abstract syntax of DOT by Amin et al. [2016]
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A APPENDIX
A.1 DOT by Amin et al. [2016]
In Figure 7, we present the abstract syntax, and in Figure 8, the typing rules of the DOT calculus

by Amin et al. [2016].

A.2 Path Replacement
The definition of the path-replacement rules that define equivalent types is presented in Figure 9.

In the figure, the notation p.b denotes a path with a possibly empty sequence of field selections,

e.g. p.b1.b2. The path replacement operation depends on the recursively defined pathnum function

that counts the number of paths in a type.

A.3 Proof Recipe of pDOT
In this section, we present an overview of the proof recipe (see Section 5.2.2) and the auxiliary

typing judgments that are involved in it. The purpose of the proof recipe is to reason about the
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Term typing

Γ(x ) = T
Γ ⊢ x : T

(Var
DOT

)

Γ, x : T ⊢ t : U x < fv(T )

Γ ⊢ λ (x : T ) t : ∀(x : T )U
(All-I

DOT
)

Γ ⊢ x : ∀(z : S )T Γ ⊢ y : S
Γ ⊢ x y : T [y/z]

(All-E
DOT

)

Γ, x : T ⊢ d : T
Γ ⊢ ν (x : T )d : µ (x : T )

({}-I
DOT

)

Γ ⊢ x : {a : T }
Γ ⊢ x .a : T

(Fld-E
DOT

)

Γ ⊢ t : T
Γ, x : T ⊢ u : U x < fv(U )

Γ ⊢ let x = t in u : U
(Let

DOT
)

Γ ⊢ x : T
Γ ⊢ x : µ (x : T )

(Rec-I
DOT

)

Γ ⊢ x : µ (z : T )

Γ ⊢ x : T [x/z]
(Rec-E

DOT
)

Γ ⊢ x : T Γ ⊢ x : U
Γ ⊢ x : T ∧U

(And-I
DOT

)

Γ ⊢ t : T Γ ⊢ T <: U
Γ ⊢ t : U

(Sub
DOT

)

Definition typing

Γ ⊢ t : U
Γ ⊢ {a = t } : {a : U }

(Def-Trm
DOT

)

Γ ⊢ {A = T } : {A : T ..T } (Def-Typ
DOT

)

Γ ⊢ d1 : T1 Γ ⊢ d2 : T2
dom(d1 ), dom(d2 ) disjoint

Γ ⊢ d1 ∧ d2 : T1 ∧T2
(AndDef-I

DOT
)

Subtyping

Γ ⊢ T <: ⊤ (Top
DOT

)

Γ ⊢ ⊥ <: T (Bot
DOT

)

Γ ⊢ T <: T (Refl
DOT

)

Γ ⊢ T <: U
Γ ⊢ {a : T } <: {a : U }

(Fld-<:-Fld
DOT

)

Γ ⊢ S <: T Γ ⊢ S <: U
Γ ⊢ S <: T ∧U

(<:-And
DOT

)

Γ ⊢ T ∧U <: T (And1-<:DOT )

Γ ⊢ T ∧U <: U (And2-<:DOT )

Γ ⊢ x : {A : S ..T }
Γ ⊢ S <: x .A

(<:-Sel
DOT

)

Γ ⊢ x : {A : S ..T }
Γ ⊢ x .A <: T

(Sel-<:
DOT

)

Γ ⊢ S <: T Γ ⊢ T <: U
Γ ⊢ S <: U

(Trans
DOT

)

Γ ⊢ S2 <: S1
Γ ⊢ T1 <: T2

Γ ⊢ {A : S1 ..T1 } <: {A : S2 ..T2 }
(Typ-<:-Typ

DOT
)

Γ ⊢ S2 <: S1
Γ, x : S2 ⊢ T1 <: T2

Γ ⊢ ∀(x : S1 )T1 <: ∀(x : S2 )T2
(All-<:-All

DOT
)

Fig. 8. DOT Type Rules [Amin et al. 2016]

most precise inert type assigned to a path by the typing environment, given the path’s general type.

The proof recipe works by performing a sequence of type transformations starting with General

typing and ending in Elimination typing.

The following diagram summarizes the typing relations that participate in the proof recipe:

General (⊢) → Tight (⊢# ) → Introduction-qp (⊢qp ) → Introduction-pq (⊢pq ) → Elim-III (⊢e3 ) → Elim-II (⊢e2 ) → Elim-I (⊢e1 )

In addition, Table 1 shows which typing rules of pDOT are handled by each of the auxiliary typing

relations. The exact definitions of the typing relations are presented in Figures 10 to 13. The proof

recipe starts by translating general into tight typing, denoted Γ ⊢# p : T , which is equivalent to

general typing but does not admit the introduction of new subtyping relationships. Tight typing is

presented in Figure 10. The following lemma states that in an inert context, the general type of a

term is the same as its tight type:

Lemma A.1 (⊢ to ⊢#). If Γ ⊢ t : T and Γ is inert then Γ ⊢# t : T .
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p .b .A [q/p] = q .b .A (Repl-Path)

p .b .type [q/p] = q .b .type (Repl-Sngl)

T1 [q/p] = T2
(T1 ∧U ) [q/p] = T2 ∧U

(Repl-And1)

T1 [q/p] = T2
(U ∧T1 ) [q/p] = U ∧T2

(Repl-And2)

T [q/p] = U
µ (x : T ) [q/p] = µ (x : U )

(Repl-Rec)

T1 [q/p] = T2
(∀(x : T1 )U ) [q/p] = ∀(x : T2 )U

(Repl-All1)

T1 [q/p] = T2
(∀(x : U )T1 ) [q/p] = ∀(x : U )T2

(Repl-All2)

T1 [q/p] = T2
{a : T1 } [q/p] = {a : T2 }

(Repl-Fld)

T1 [q/p] = T2
{A : T1 ..U } [q/p] = {A : T2 ..U }

(Repl-Typ1)

T1 [q/p] = T2
{A : U ..T1 } [q/p] = {A : U ..T2 }

(Repl-Typ2)

Fig. 9. Replacement of a path p in a type by q

Relation Type rules Inlined subtyping rules (Sub+. . . )

Elimination

⊢e1 Var, Fld-E , Rec-E And1-<:, And2-<:
⊢e2 Sngl-E

⊢e3 Sngl-Trans

Introduction

⊢pq &-I Snglpq -<: , <:-And, Top, All-<:-All, Fld-<:-Fld, Typ-<:-Typ

⊢qp &-I, Fld-I , Rec-I Snglqp -<: , <:-And, <:-Sel

Tight ⊢# all all, tight versions of Sel rules

General ⊢ all all

Table 1. Auxiliary typing relations that make up the proof recipe of pDOT

Each of the remaining proof-recipe typing relations comes in two versions: for paths and for

values. We present only the versions for paths; the formulations of the lemmas for values are similar.

After obtaining a tight type of a path, we can convert it into an Introduction-qp type:

Lemma A.2 (⊢# to ⊢qp ). If Γ ⊢# p : T and Γ is inert then Γ ⊢qp p : T .

Introduction-qp typing, denoted Γ ⊢qp p : T , contains introduction rules (such as recursion intro-

duction) and inlined versions of the Snglqp subtyping rule (see Figure 11).

The remaining proof recipe lemmas are specialized to function and singleton types, and we will

only present the ones for function types. The following lemma establishes that if a path p has a

function type in Introduction-qp typing then it has the same type in Introduction-pq typing:
4

Lemma A.3 (⊢qp to ⊢pq (∀)). If Γ ⊢qp p : ∀(x : T )U and Γ is inert then Γ ⊢pq p : ∀(x : T )U .

Introduction-pq typing, denoted Γ ⊢pq p : T , contains introduction rules and inlined versions of

the Snglpq subtyping rule (see Figure 12).

To convert a function type from Introduction-pq typing into Elimination-III typing, we use the

following lemma.

4
The versions of Lemma ?? for singleton and object types are more complicated: the relationship between a path’s

Introduction-qp as Introduction-pq type will be equivalence (i.e. possible replacements of aliased paths) rather than

equality.
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Tight term typing

Γ(x ) = T
Γ ⊢# x : T

(Var#)

Γ, x : T ⊢ t : U x < fv(T )

Γ ⊢# λ (x : T ) t : ∀(x : T )U
(All-I#)

Γ ⊢# p : ∀(z : S )T Γ ⊢# q : S

Γ ⊢# p q : T [q/z]
(All-E#)

x ; Γ, x : T ⊢ d : T
Γ ⊢# ν (x : T )d : µ (x : T )

({}-I#)

Γ ⊢# p : {a : T }

Γ ⊢# p .a : T
(Fld-E#)

Γ ⊢# p .a : T
Γ ⊢# p : {a : T }

(Fld-I#)

Γ ⊢# t : T
Γ, x : T ⊢ u : U x < fv(U )

Γ ⊢# let x = t in u : U
(Let#)

Γ ⊢# p : q .type Γ ⊢ q : T
Γ ⊢# p : T

(Sngl-Trans#)

Γ ⊢# p : q .type Γ ⊢# q .a
Γ ⊢# p .a : q .a .type

(Sngl-E#)

Γ ⊢# p : T [p/x]

Γ ⊢# p : µ (x : T )
(Rec-I#)

Γ ⊢# p : µ (x : T )

Γ ⊢# p : T [p/x]
(Rec-E#)

Γ ⊢# p : T Γ ⊢# p : U

Γ ⊢# p : T ∧U
(&-I#)

Γ ⊢# t : T Γ ⊢ T <: U
Γ ⊢# t : U

(Sub#)

Tight subtyping

Γ ⊢# T <: ⊤ (Top#)

Γ ⊢# ⊥ <: T (Bot#)

Γ ⊢# T <: T (Refl#)

Γ ⊢# S <: T Γ ⊢# T <: U
Γ ⊢# S <: U

(Trans#)

Γ ⊢# T ∧U <: T (And1-<:#)

Γ ⊢# T ∧U <: U (And2-<:#)

Γ ⊢# S <: T Γ ⊢# S <: U
Γ ⊢# S <: T ∧U

(<:-And#)

Γ ⊢e3 p : {A : S ..S }

Γ ⊢# S <: p .A
(<:-Sel#)

Γ ⊢e3 p : {A : S ..S }

Γ ⊢# p .A <: S
(Sel-<:#)

Γ ⊢e3 p : q .type Γ ⊢e2 q
Γ ⊢# T <: T [q/p]

(Snglpq -<:#)

Γ ⊢e3 p : q .type Γ ⊢e2 q
Γ ⊢# T <: T [p/q]

(Snglqp -<:#)

Γ ⊢# T <: U
Γ ⊢# {a : T } <: {a : U }

(Fld-<:-Fld#)

Γ ⊢# S2 <: S1 Γ ⊢# T1 <: T2
Γ ⊢# {A : S1 ..T1 } <: {A : S2 ..T2 }

(Typ-<:-Typ#)

Γ ⊢# S2 <: S1
Γ, x : S2 ⊢ T1 <: T2

Γ ⊢# ∀(x : S1 )T1 <: ∀(x : S2 )T2
(All-<:-All#)

Fig. 10. Tight typing

Lemma A.4 (⊢pq to ⊢e3 (∀)). If Γ ⊢pq p : ∀(x : T )U and Γ is inert then there exist types T ′ and U ′

such that Γ ⊢# T <: T
′
, Γ, x : T ⊢# U

′ <: U , and Γ ⊢e3 p : ∀(x : T
′)U ′.

Ifp has typeT in Elimination-III typing, denoted Γ ⊢e3 p : T , we know that either the environment

directly assigns p the type T or that p is assigned a singleton type q, and by recursively following

path aliases starting with q we eventually arrive at T . More precisely, if Γ ⊢e3 p : T , then one of the

following is true:

1) Γ ⊢e1 p : T , i.e. T is the most precise type that Γ assigns to p (modulo possible recursion and

intersection elimination), or

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.



A Path To DOT 1:31

Introduction-qp path typing

Γ ⊢pq p : T
Γ ⊢qp p : T (Pathqp )

Γ ⊢qp p : S Γ ⊢qp p : T
Γ ⊢qp p : S ∧T (Andqp )

Γ ⊢qp p : T [p/x]

Γ ⊢qp p : µ (x : T )
(Rec-Iqp )

Γ ⊢qp p .a : T
Γ ⊢qp p : {a : T } (Fld-Iqp )

Γ ⊢qp p : T
Γ ⊢e1 q : {A : T ..T }

Γ ⊢qp p : q .A (Typ-Selqp )

Γ ⊢qp r : µ (x : T )
Γ ⊢e1 p : q .type Γ ⊢e2 q
Γ ⊢qp r : µ (x : T ) [p/q]

(Sngl-Recqp )

Γ ⊢qp r : r ′ .A
Γ ⊢e1 p : q .type Γ ⊢e2 q

Γ ⊢qp r : r ′ .A [p/q]
(Sngl-Selqp )

Γ ⊢qp r : r ′ .type
Γ ⊢e1 p : q .type Γ ⊢e2 q

Γ ⊢qp r : r ′ .type [p/q] (Sngl-Snglqp )

Introductionqp value typing

Γ ⊢pq v : T
Γ ⊢qp v : T (Pathqp -v )

Γ ⊢qp v : S Γ ⊢qp p : T
Γ ⊢qp v : S ∧T (Andqp -v )

Γ ⊢qp v : T
Γ ⊢e1 q : {A : T ..T }

Γ ⊢qp v : q .A (Typ-Selqp -v )

Γ ⊢qp v : µ (x : T )
Γ ⊢e1 p : q .type Γ ⊢e2 q
Γ ⊢qp v : µ (x : T ) [p/q]

(Sngl-Recqp -v )

Γ ⊢qp v : T [p/x]

Γ ⊢qp v : µ (x : T )
(Rec-Iqp -v )

Γ ⊢qp v : r ′ .A
Γ ⊢e1 p : q .type Γ ⊢e2 q

Γ ⊢qp v : r ′ .A [p/q]
(Sngl-Selqp -v )

Fig. 11. Introductionqp Typing

2) p = p ′.b (i.e. p ′ is a prefix of p), Γ ⊢e1 p
′
: q.type (i.e. Γ ⊢e2 p ′.b : q.b .type), and either

– T = q.b .type, or
– Γ ⊢e3 q.b : T .

The Elimination typing rules are presented in Figure 13. For the proof recipe, we do not need to

further convert p’s type into Elimination-II and -I typings. However, these typing relations are

needed to prove the lemmas of the proof recipe.

B CORRESPONDENCEWITH ARTIFACT
This section contains a correspondence guide between the pDOT type-safety proof as presented in

Section 5 and its Coq formalization which is presented in the accompanying artifact and can be

also found under

https://git.io/dotpaths

B.1 Compiling the Proof
System requirements:

– make

– an installation of Coq 8.9.0, preferably through opam

– the TLC library which can be installed through

opam repo add coq-released http://coq.inria.fr/opam/released

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://git.io/dotpaths
https://coq.inria.fr/opam-using.html
https://opam.ocaml.org/
https://gitlab.inria.fr/charguer/tlc


1:32 Marianna Rapoport and Ondřej Lhoták

Introduction-pq path typing

Γ ⊢e3 p : T

Γ ⊢pq p : T
(Pathpq )

Γ ⊢pq p : {a : S } Γ ⊢# S <: T

Γ ⊢pq p : {a : T }
(Fld-<:pq )

Γ ⊢pq p : {A : T ..U }
Γ ⊢# T ′ <: T Γ ⊢# U <: U ′

Γ ⊢pq p : {A : T ′ ..U ′ }
(Typpq )

Γ ⊢pq p : ∀(x : S )T
Γ ⊢# S ′ <: S Γ, x : S ′ ⊢ T <: T ′

Γ ⊢pq p : ∀(x : S ′)T ′
(Allpq )

Γ ⊢pq p : S Γ ⊢pq p : T

Γ ⊢pq p : S ∧T
(Andpq )

Γ ⊢pq p : T

Γ ⊢pq p : ⊤
(Toppq )

Γ ⊢pq r : µ (x : T )
Γ ⊢e1 p : q .type Γ ⊢e2 q
Γ ⊢pq r : µ (x : T ) [q/p]

(Sngl-Recpq )

Γ ⊢pq r : r ′ .A
Γ ⊢e1 p : q .type Γ ⊢e2 q

Γ ⊢pq r : r ′ .A [q/p]
(Sngl-Selpq )

Γ ⊢pq r : r ′ .type
Γ ⊢e1 p : q .type Γ ⊢e2 q

Γ ⊢pq r : r ′ .type [q/p] (Sngl-Snglpq )

Introduction-pq value typing

Γ ⊢e1 v : T
Γ ⊢pq v : T

(Path-vpq )

Γ ⊢pq v : ∀(x : S )T
Γ ⊢# S ′ <: S Γ, x : S ′ ⊢ T <: T ′

Γ ⊢ v : ∀(x : S ′)T ′
(All-vpq )

Γ ⊢pq v : S Γ ⊢pq v : T
Γ ⊢pq v : S ∧T

(And-vpq )

Γ ⊢pq v : T
Γ ⊢pq v : ⊤

(Top-vpq )

Γ ⊢pq v : µ (x : T )
Γ ⊢e1 p : q .type Γ ⊢e2 q
Γ ⊢pq v : µ (x : T ) [q/p]

(Rec-Sngl-vpq )

Fig. 12. Introduction-pq Typing

opam install -j4 coq-tlc

To compile the proof navigate to the paths directory and run make.

B.2 Paper Correspondence
The pDOT calculus is formalized using the locally nameless representation with cofinite quantifica-

tion [Aydemir et al. 2008] in which free variables are represented as named variables, and bound

variables are represented as de Bruijn indices.

We include the Sequences library by Xavier Leroy into our development to reason about the

reflexive, transitive closure of binary relations.

The correspondence between the paper and Coq formalization is documented in Tables 2, 3,

and 4.

Table 2. Correspondence of Definitions

Definition In paper File Paper notations Proof notations In proof

Abstract

Syntax

Fig. 1 Definitions.v

- variable Fig. 1 Definitions.v avar
- term member Fig. 1 Definitions.v trm_label
- type member Fig. 1 Definitions.v typ_label
- path Fig. 1 Definitions.v x .a .b .c

p .a
p .b

p_sel x (c::b::a::nil)
p·a
p· ·b

path

- term Fig. 1 Definitions.v trm
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Table 2. Correspondence of Definitions

Definition In paper File Paper notations Proof notations In proof

- stable term Fig. 1 Definitions.v def_rhs
- value Fig. 1 Definitions.v ν (x : T )d

λ (x : T ) t
ν(T)d
λ(T)t

val

- definition Fig. 1 Definitions.v {a = t }
{A = T }

{a := t}
{A := T}

def

- type Fig. 1 Definitions.v {a : T }
{A : T ..U }
∀(x : T )U
p .A
p .type
µ (x : T )
T ∧U
⊤

⊥

{a : T}
{A >: T <: U}
∀(T)U
p↓A
{{p}}
µ(T)
T ∧ U
⊤

⊥

typ

Type System

- term typing Fig. 2 Definitions.v Γ ⊢ t : T Γ ⊢ t : T ty_trm
- definition

typing

Fig. 2 Definitions.v p ; Γ ⊢ d : T x; bs; Γ ⊢ d : T
(single definition)

x; bs; Γ ⊢ d :: T
(multiple definitions)

Here, p=x.bs, i.e. x is p’s receiver,
and bs are p’s fields in reverse

order

ty_def
ty_defs

- tight bounds Fig. 2 Definitions.v tight_bounds
- subtyping Fig. 2 Definitions.v Γ ⊢ T <: U Γ ⊢ T <: U subtyp
Operational

semantics

Fig. 3 Reduction.v γ | t 7−→ γ ′ | t ′
γ | t 7−→∗ γ ′ | t ′

(γ , t) 7−→ (γ ', t')
(γ , t) 7−→* (γ ', t')

red

Path lookup Fig. 4 Lookup.v γ ⊢ p { s
γ ⊢ s {∗ s ′

γ ⟦ p { s ⟧
γ ⟦ s {* s' ⟧

lookup_step

Extended

reduction

Sec. 5 Safety.v γ | t ↠ γ ′ | t ′
γ | t ↠∗ γ ′ | t ′

(γ , t)↠ (γ ', t')
(γ , t)↠∗ (γ ', t')

extended_red

Inert and

record types

Fig. 5 Definitions.v inert T

inert Γ
inert_typ
inert

Well-formed

environments

Sec. 5.2.1 PreciseTyping.v wf

Correspondence

between a

value and type

environment

Sec. 5 Definitions.v γ : Γ γ ... Γ well_typed

Table 3. Correspondence of Lemmas and Theorems

Theorem File In proof

Theorem 5.1 (Soundness) Safety.v safety
Theorem 5.2 (Extended Soundness) Safety.v extended_safety
Lemma 5.3 (Progress) Safety.v progress
Lemma 5.4 (Preservation) Safety.v preservation
Lemma 5.5 CanonicalForms.v canonical_forms_fun

Table 4. Correspondence of Examples

Example In paper File

List example Figure 6 a ListExample.v

Compiler example Figure 6 b CompilerExample.v
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Table 4. Correspondence of Examples

Example In paper File

Singleton type example Figure 6 c SingletonTypeExample.v

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SingletonTypeExample.html


A Path To DOT 1:35

Elimination typing for values

Γ, x : T ⊢ t : U x < fv(T )

Γ ⊢e1 λ (x : T ) t : ∀(x : T )U
(All-Ie1)

x ; Γ, x : T ⊢ d : T
Γ ⊢e1 ν (x : T )d : µ (x : T )

({}-Ie1)

Elimination typing for paths
⊢e1

Γ(x ) = T
Γ ⊢e1 x : T

(Vare1)

Γ ⊢e1 p : µ (z : T )

Γ ⊢e1 p : T
[
p/z

] (Rec-Ee1)

Γ ⊢e1 p : T ∧U

Γ ⊢e1 p : T
(And1-Ee1)

Γ ⊢e1 p : T ∧U

Γ ⊢e1 p : U
(And2-Ee1)

Γ ⊢e1 p : {a : T }
Γ ⊢e1 p .a : T

(Fld-Ee1)

⊢e2

Γ ⊢e1 p : T
Γ ⊢e2 p : T

(Pathe2)
Γ ⊢e2 p : q .type Γ ⊢e2 q .a

Γ ⊢e2 p .a : q .a .type
(Sngl-Ee2)

⊢e3

Γ ⊢e2 p : T
Γ ⊢e3 p : T

(Pathe3)
Γ ⊢e2 p : q .type Γ ⊢e3 q : U

Γ ⊢e3 p : U
(Sngl-Transe3)

Fig. 13. Elimination Typing Rules

B.3 Proof Organization
B.3.1 Safety Proof. The Coq proof is split up into the following modules:

– Definitions.v: Definitions of pDOT’s abstract syntax and type system.

– Reduction.v: Normal forms and the operational semantics of pDOT.

– Safety.v: Final safety theorem through Progress and Preservation.

– Lookup.v: Definition of path lookup and properties of lookup.

– Binding.v: Lemmas related to opening and variable binding.

– SubEnvironments.v: Lemmas related to subenvironments.

– Weakening.v: Weakening Lemma.

– RecordAndInertTypes.v: Lemmas related to record and inert types.

– Replacement.v: Properties of equivalent types.

– Narrowing.v: Narrowing Lemma.

– PreciseFlow.v and PreciseTyping.v: Lemmas related to elimination typing. In particular,

reasons about the possible precise types that a path can have in an inert environment.

– TightTyping.v: Defines tight typing and subtyping.

– Substitution.v: Proves the Substitution Lemma.

– InvertibleTyping.v and ReplacementTyping.v: Lemmas related to introduction typing.

– GeneralToTight.v: Proves that in an inert context, general typing implies tight typing.

– CanonicalForms.v: Canonical Forms Lemma.

– Sequences.v: A library of relation operators by Xavier Leroy.

B.3.2 Examples.
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https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Definitions.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Reduction.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Safety.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Lookup.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Binding.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SubEnvironments.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Weakening.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/RecordAndInertTypes.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Replacement.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Narrowing.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseFlow.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/PreciseTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/TightTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Substitution.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/InvertibleTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ReplacementTyping.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/GeneralToTight.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CanonicalForms.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/Sequences.html
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– CompilerExample.v: The dotty-compiler example that contains paths of length greater than

one.

– ListExample.v: A covariant-list implementation.

– SingletonTypeExample.v: Method chaining through singleton types.

– ExampleTactics.v: Helper tactics to prove the above examples.

Figure 14 shows a dependency graph between the Coq modules.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: October 2019.

https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/CompilerExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ListExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/SingletonTypeExample.html
https://amaurremi.github.io/dot-calculus/src/extensions/paths/doc/ExampleTactics.html
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Fig. 14. Dependency between Coq proof files
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