

#### Optimising capacity expansion for future renewable energy systems

VTT

Niina Helistö 19 June 2019 WESC Cork, Ireland

#### Modelling challenges in power system planning

- Historically, the most relevant objective in power system planning has been to meet the load duration curve at minimum cost
- The growing share of variable renewable energy generation brings additional challenges to the modelling

| Temporal representation                  | <ul> <li>Screening curve</li> <li>Time slices</li> <li>Representative periods</li> <li>Full resolution</li> </ul>                                    |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit constraints                         | <ul><li>Unit commitment</li><li>Stylized constraints</li></ul>                                                                                       |
| Spatial representation<br>and power flow | <ul> <li>Copper plate</li> <li>Power transport</li> <li>DC power flow</li> <li>AC power flow</li> </ul>                                              |
| Short-term uncertainty                   | <ul><li>Balancing market for forecast errors</li><li>Operating reserves</li></ul>                                                                    |
| Power system stability                   | <ul><li> Operating reserves</li><li> Inertia requirements etc.</li></ul>                                                                             |
| Capacity adequacy                        | <ul> <li>Planning reserve margin or other capacity adequacy requirement</li> <li>Capacity value of alternative sources</li> <li>LOLE etc.</li> </ul> |
| Energy system integration                | <ul> <li>Electricity, heat, gas, etc.</li> <li>Power-to-X</li> <li>Customer behaviour</li> </ul>                                                     |
| Long-term uncertainty                    | <ul><li>Interannual variations</li><li>Uncertainty in demand, fuel prices, etc.</li></ul>                                                            |

Helistö, N, Kiviluoma, J, Holttinen, H, Lara, JD, Hodge, B-M. Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches. *WIREs Energy Environ*. 2019;e341. <u>https://doi.org/10.1002/wene.341</u>

# Findings from a review of 47 variable generation integration studies

- Using a low temporal resolution or only few representative days is not enough
- Taking into account operational constraints of power plants and power grids is important
  - Especially together with various policy constraints, such as target shares for renewables or CO<sub>2</sub> limits
- Adequate representation of potential flexibility sources also in other energy sectors becomes necessary
- Clear need for further model development and data acquisition
- Recommendations:
  - Informed selection of the model for power system planning
  - Appropriate interpretation of the model results that accounts for the underlying simplifications and assumptions in each model, as well as the purpose of modelling

Helistö, N, Kiviluoma, J, Holttinen, H, Lara, JD, Hodge, B-M. Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches. *WIREs Energy Environ*. 2019;e341. <u>https://doi.org/10.1002/wene.341</u>

# Backbone – an adaptable energy systems modelling framework



Helistö, N, Kiviluoma, J, Ikäheimo, J, Rasku, T, Rinne, E, O'Dwyer, C, Li, R, Flynn, D. Backbone – an adaptable energy systems modelling framework. https://cris.vtt.fi/en/publications/backbone-an-adaptable-energy-systems-modelling-framework



### **Backbone capabilities**

- Investment planning and operational scheduling
- Features and constraints
  - Stochastic parameters
  - MIP-based unit commitment
  - Multiple reserve products
  - Storage units
  - Controlled and uncontrolled energy transfers
  - Multiple energy sectors
- Available with open-source license (GAMS license needed)
  - https://gitlab.vtt.fi/backbone/backbone



#### Number of representative weeks



Helistö, N, Kiviluoma, J, Reittu, H. Concurrent selection of representative slices from multiple historic time series of power generation for long term power system optimization. To be submitted.

#### Cases

| Case                              | Reserves* | Ramp<br>limits | Temporal<br>scope | Temporal resolution | Online<br>variables** | lnv.<br>variables |
|-----------------------------------|-----------|----------------|-------------------|---------------------|-----------------------|-------------------|
| 01 reference                      |           |                | 5 weeks           | 1 h                 |                       | linear            |
| 02 reserves                       | yes       |                | 5 weeks           | 1 h                 |                       | linear            |
| 03 ramp limits                    |           | yes            | 5 weeks           | 1 h                 |                       | linear            |
| 04 full year                      |           |                | full year         | 1 h                 |                       | linear            |
| 05 online LP                      |           |                | 5 weeks           | 1 h                 | linear                | linear            |
| 06 online LP, invest MIP          |           |                | 5 weeks           | 1 h                 | linear                | integer           |
| 07 online MIP, invest MIP         |           |                | 5 weeks           | 1 h                 | integer               | integer           |
| 08 online LP, reserves            | yes       |                | 5 weeks           | 1 h                 | linear                | linear            |
| 09 online LP, ramp limits         |           | yes            | 5 weeks           | 1 h                 | linear                | linear            |
| 10 online LP, ramp limits, 15 min |           | yes            | 5 weeks           | 15 min              | linear                | linear            |
| 11 online LP, ramp limits, 5 min  |           | yes            | 5 weeks           | 5 min               | linear                | linear            |

\* with penalties (for violating the reserve requirement equation) \*\* and corresponding start-up and shutdown variables & costs, as well as minimum load

### Input

- RTS-GMLC\* time series (wind, PV, load; 5 min resolution)
- Greenfield system (no existing power plants)
- Copper plate (no power transfers)
- CO<sub>2</sub> price EUR 50 per tonne, natural gas price EUR 30 per MWh, nuclear fuel price EUR 5 per MWh
- 6 investment options

|         | Unit size<br>(MW) | lnv. cost<br>(€/kW) | Fixed O&M<br>cost (€/kW/a) | Lifetime (a) | Var. O&M<br>cost (€/MWh) | Start cost<br>(€/MW) | Max. eff. (%) | Min. load (%) | Ramp rate<br>(p.u./min) |
|---------|-------------------|---------------------|----------------------------|--------------|--------------------------|----------------------|---------------|---------------|-------------------------|
| OCGT    | 50                | 550                 | 20                         | 35           | 1                        | 25                   | 45            | 20            | 0.4                     |
| CCGT    | 200               | 850                 | 20                         | 35           | 1                        | 50                   | 60            | 40            | 0.05                    |
| wind    |                   | 1100                | 20                         | 20           |                          |                      |               |               |                         |
| PV      |                   | 650                 | 10                         | 30           |                          |                      |               |               |                         |
| nuclear | 800               | 4500                | 95                         | 40           | 2                        | 100                  | 34            | 70            | 0.0125                  |
| battery |                   | 200                 | 10                         | 30           |                          |                      | 90            |               |                         |

09/08/2019 VTT – beyond the obvious

\*Reliability Test System - Grid Modernization Lab Consortium https://github.com/GridMod/RTS-GMLC

#### **Investment results**



#### **Total costs compared to the reference case**







# Checking the feasibility of the planning outcome



### **Conclusions and future work**

- Growing share of wind power and PV changes the modelling challenges in power system planning
  - Adequate temporal representation
  - Operational constraints of power plants and power grids
  - Flexibilities from other energy sectors

Next steps in the case study

- Check the feasibility of the planning outcomes using a scheduling model
- How to consider storage state evolution between the representative periods
- How to best capture peak net load periods to ensure a sufficient amount of available capacity
- Other operational detail combinations
- Other test systems with correlated time series





Niina Helistö niina.helisto@vtt.fi +358 40 480 7620 @VTTFinland

www.vtt.fi

09/08/2019