There is a newer version of this record available.

Presentation Open Access

Learning with Graph Kernels in the Chemical Universe

Tang, Yu-Hang


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Tang, Y. H., &amp; de Jong, W. A. (2019). Prediction of atomization energy using graph kernel and active learning. The Journal of chemical physics, 150(4), 044107. https://doi.org/10.1063/1.5078640</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">graph</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">active learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">molecular prediction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">computational chemistry</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">kernel</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">similarity</subfield>
  </datafield>
  <controlfield tag="005">20200120174217.0</controlfield>
  <controlfield tag="001">3364078</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1186435</subfield>
    <subfield code="z">md5:f1505a95ec363dd295576db9e7c5bdeb</subfield>
    <subfield code="u">https://zenodo.org/record/3364078/files/Graph-Kernels-Chemical-Universe.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-08-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3364078</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Lawrence Berkeley National Laboratory</subfield>
    <subfield code="0">(orcid)0000-0001-7424-5439</subfield>
    <subfield code="a">Tang, Yu-Hang</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Learning with Graph Kernels in the Chemical Universe</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Presentations slides of &lt;a href="https://crd.lbl.gov/departments/computational-science/ccmc/staff/alvarez-fellows/yu-hang-tang/"&gt;Yu-Hang Tang&lt;/a&gt;&amp;nbsp;during the 2019 &lt;a href="https://data-science.llnl.gov/latest/workshop-2019#Day%202"&gt;DSI Data Science Workshop&lt;/a&gt;&amp;nbsp;on application of active machine learning and graph kernels. The talk also features the release of the &lt;a href="https://pypi.org/project/graphdot/"&gt;GraphDot&lt;/a&gt; library.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3364077</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3364078</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
257
91
views
downloads
All versions This version
Views 257184
Downloads 9145
Data volume 117.7 MB53.4 MB
Unique views 240172
Unique downloads 7237

Share

Cite as