
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

A Semi-Formal Technique to Generate Effective
Test Sequences for Reconfigurable Scan Networks

Riccardo Cantoro∗, Aleksa Damljanovic†, Matteo Sonza Reorda‡ and Giovanni Squillero§

Politecnico di Torino
Torino, Italy

Email:{ ∗riccardo.cantoro, †aleksa.damljanovic, ‡matteo.sonzareorda, §giovanni.squillero } @polito.it

Abstract—The broad need to efficiently access all the instru-
mentation embedded within a semiconductor device called for a
standardization, and the reconfigurable scan networks proposed
in IEEE 1687 have been demonstrated effective in handling
complex infrastructures. At the same time, different techniques
have been proposed to test the new circuitry required; however,
most of the automatic approaches are either too computationally
demanding to be applied in complex cases, or too approximate
to yield high-quality tests. This paper models the state of
a reconfigurable scan network with a finite state automaton,
using the length of the active path as the output alphabet
and the configurations as input symbols. Permanent faults are
represented as incorrect transitions, and a greedy algorithm is
used to generate a functional test sequence able to detect all these
multiple state-transition faults. The automaton’s state set and the
input alphabet are small subsets of the possible ones, and are
carefully chosen. Experimental results on ITC’16 benchmarks
demonstrate that the proposed approach is broadly applicable;
the test sequences are more efficient than the ones previously
generated by search heuristics.

I. INTRODUCTION

Most of the Integrated Circuits (ICs) designed in the last
years include several resources whose purpose is not to support
the circuit functionality, but are rather related to ancillary
aspects such as test, calibration, debug, and monitoring. In
particular, current ICs often integrate a plethora of sensors
and actuators, each associated to a register to be read and/or
written from the outside, sometimes at the end of the man-
ufacturing process, sometimes during the operational phase.
Many test solutions (e.g., BIST ones) also require registers
to activate/initialize the test and retrieve results. In order to
effectively access all these registers (also called instruments,
or Test Data Registers), companies first included all these reg-
isters into a single chain, often accessed through the standard
IEEE 1149.1 interface. Due to the continuous growth in the
length of such a chain, they then started devising solutions
based on the so called Reconfigurable Scan Networks (RSNs)
[1].

Following this trend, IEEE published the IEEE 1687 stan-
dard [2], which in some way extends the popular IEEE 1149.1.
The IEEE 1687 standard allows to split the scan chains
accessible through the JTAG’s Test Access Port (TAP), and
to program their configuration; in this way, the designer can
flexibly choose the best trade-off between different parameters,
such as area or access time. The newest version of the IEEE

1149.1 standard [3] also describes ways to design RSNs within
a circuit.

The typical RSNs are chains of flip-flops interleaved with
special modules (called Segment Insertion Bits (SIBs) and
ScanMuxes (SMs) by the IEEE 1687 standard), allowing to
dynamically split the whole chain into segments that may be
connected in series or in parallel, and to support a faster and
more efficient access to the resources; the user first configures
the network, selecting the subset of instruments to be accessed
and shifting-in a proper sequence of bits to program the SIBs
and SMs, then uses the network to serially read and write
the flip-flops belonging to the currently active segments. CAD
tools already exist, automating the introduction and the usage
of RSNs [4]. When a circuit includes an RSN, the issue
of testing the related hardware must clearly be considered,
checking for possible defects affecting it. Failing to effectively
solve this issue may lead to completely false results when
using the RSN itself.

Some works faced the issue of testing the test circuitry
mandated by the IEEE 1149.1 standard [5], while other works
focused on the test of possible permanent faults affecting a
standard scan chain, e.g., by shifting into the chain a sequence
of alternated 0s and 1s, and checking that the same sequence
appears at the other extreme of the chain [6]–[8]. Testing an
RSN is more complex, as testing must also check whether the
network can be properly configured and whether it works as
expected after enforcing whichever legal configuration.

In [9] we proposed a general approach to automatically gen-
erate a test sequence for an IEEE 1687 network with respect
to permanent faults. For each type of programmable module
we provided techniques for their test, and then described how
to combine them into a single comprehensive test. This test
is independent on the specific implementation of the network
elements and does not require any change in the hardware
implementing the network. Test generation can start directly
from the network structure. The test generation algorithms
proposed in [9] were based on heuristics that could easily run
even on relatively large RSNs.

In [10] we refined that approach to minimize the duration
of the resulting test sequence: the faced problem was properly
modeled according to the graph theory, and an optimal al-
gorithm able to generate the minimum-duration test sequence
was described. Unfortunately, such an approach can only work
on relatively small RSNs, and sub-optimal solutions must be

adopted when dealing with real cases.
Since the design of large and complex SoCs may cause the

appearance of very complex RSNs, generating an effective
test even for large RSNs may turn into a computationally
complex problem, and methods able to effectively scale are
increasingly important. In [11] we proposed a new method
facing this problem, based on evolutionary computation. Its
main advantage lies in its ability to always produce a solution,
no matter the RSN complexity, while the quality of the
produced result (i.e., the duration of the resulting test) is never
too far from the optimum.

In this paper we make one step forward, and propose a
new method which is able to deal with larger and more
complex RSNs and can produce a test sequence able to detect
any permanent fault affecting the reconfigurable modules, but
whose duration is lower than the one of the test sequences
generated by the heuristic solutions proposed in [9], with a
more limited computational effort with respect to the method
in [11]. Moreover, the approach proposed in this paper is also
able to take into account the effects of faults on the RSN
configuration phase. The proposed method is based on a semi-
formal approach: a Finite State Automaton is dynamically built
and used to generate the minimum length test sequence able to
detect permanent faults in the target RSN. Experimental results
are reported on the set of benchmark networks proposed in
[12], which practically demonstrate that the proposed approach
is able to identify significantly shorter test sequences than
those produced by the methods described in [9] and [11], while
always keeping the computational cost under control.

The paper is organized as follows. In Section II we sum-
marize the key characteristics of the IEEE 1687 networks. In
Section III we propose the proposed technique for generating
an optimized test sequence for a RSN. Section IV reports some
experimental results gathered on the standard set of IEEE 1687
networks, and Section V finally draws some conclusions.

II. BACKGROUND

In this Section we will first briefly overview the key charac-
teristics of an IEEE 1687 network, then explain how their test
can be performed according to the method first introduced in
[9], and finally summarize why minimizing the test duration
may turn into a computationally complex task.

A. Overview of Reconfigurable Scan Networks

As was mentioned in Section I, a key feature of RSNs
is the possibility to partition the set of instruments into
segments, and then dynamically decide which segments are
currently accessible and which are bypassed. This is done
by incorporating programmable components into the network
structure. Configuration of these components can be performed
by shifting the required values into the S shift flip-flops of
the control register and then latching the shifted bits into
the U latches. One such programmable component is the SIB
module introduced by IEEE 1687, which allows for bypassing
a segment of a network. Therefore, it is possible to create a
hierarchical network with the use of SIBs.

0
 1

U

S so
si

fso tsi

(a) Simplified schematic

SIB so si

fso tsi

(b) Symbol

 0
0

 0
1

 1
0

 1
1

U

S

TDR1

TDR2

TDR3

TDR4

U

S

(a) Using a ScanMux to select

among four TDRs

S

(b) Symbol for

control register

Fig. 1. Segment Insertion Bit (SIB) and ScanMux (SM) modules.

Fig. 1(a) shows the simplified schematic of a possible
implementation of a SIB, which is based on a two-input
multiplexer and a one-bit shift-update register. If the latched
bit is 0, the SIB is de-asserted, and the scan-path is from the
si terminal, to the so terminal via the S flip-flop, bypassing
the segment between the tsi and fso terminals. If, on the
other hand, the latched bit is a 1, the SIB is asserted, and the
scan-path includes the segment connected between the tsi
and fso terminals of the SIB. In this paper, the symbol shown
in Fig. 1(b) is used to represent a SIB.

Other ad hoc RSNs can be constructed by the use of
SMs and shift-update registers. As an example, consider the
network shown in Fig. 1(c) in which a two-bit shift-update
register is used to select among four inputs of a 4-to-1 SM.
In the rest of this paper, the symbol shown in Fig. 1(d) will
be used to represent the shift-update register that controls an
SM.

To operate an IEEE 1687 network from outside the chip, the
IEEE 1149.1 TAP can be used. The TAP finite state machine
provides the control signals needed to configure the IEEE 1687
network and access the instruments through it.

Let us now consider a simple RSN example, corresponding
to a circuit which includes five instruments: the user can access
them through the TAP port, reading or writing from/to the
associated Test Data Registers (TDR1 to TDR5). In order to
save time when accessing to the instruments, the designer,
instead of connecting all TDRs into a single chain, like in
1149.1-complaint circuits, may decide to adopt an IEEE 1687
network including three SIBs and one SM, as shown in Fig. 2;
each of these four configuration modules can be configured to
allow access to a given subset of TDRs (and the associated
instruments). Table I reports the eight possible configurations
supported by this network, which depend on how the SIBs and
the SM have been configured. In Table I, “A” means asserted,
“D” means de-asserted, while 0 and 1 correspond to the two
possible positions of the SM.

B. Test of Reconfigurable Scan Networks

Testing a standard (non-reconfigurable) scan chain for per-
manent faults can be performed by shifting a suitable sequence
of 0s and 1s through the scan chain. RSNs are however,
far more complicated to test. Flip-flops composing the TDRs
have to be tested to check if they can correctly shift values.
Additionally, reconfigurable modules have to be tested to
check whether they are able to move the network to the
corresponding configurations.

In this work we use the high-level fault model introduced in
[9]. The faults affecting the reconfigurable modules, such as

TAP port

SIB3 SIB1

TDR1 TDR5

TDI TDO

SIB2

TDR2

M
U

X

S

TDR3

TDR4

0

1

length=6

length=9

length=3

length=4

length=13

Fig. 2. Example of an IEEE 1687 RSN.

SMs, are modeled such that a different configuration may be
selected rather than the expected one, and could lead to a path
with different length. For example, in Fig. 2 the multiplexer
(MUX) may be affected by a permanent fault whose effect is
that the segment connected to the input 0 is always selected,
no matter the value in the selection cell. The same may arise
for the generic SIBi, which can be affected by faults, which
are named stuck-at asserted/de-asserted, or SIBi-s@A, SIBi-
s@D. The stuck-at faults in the scan bits of the selection cells
are considered as detected by implication by testing such high-
level faults, which cover also the faults affecting the update
logic of the reconfigurable modules. Moreover, such faults
cover some faults affecting the reset logic, whose effect is that
the module is stuck at the reset value. The other reset faults
(i.e., those that make the reset ineffective) are not considered
but can be targeted by resorting to the techniques described
in [13].

According to this high-level fault model, one can test an
RSN by first configuring the RSN so that the target fault is
excited, and then comparing the length of the activated path
against the length of the expected path. As an example, the
high-level fault stucking the SM of Fig. 2 to 1, which always
selects the segment connected to the input 1, can be excited by
a configuration which selects the input 0; configurations C12

and C14 fulfill this requirement. Once one of them is activated,
one can measure the length of the active path by shifting a
given sequence (called test vector) in TDI and checking when
it will appear on TDO. Any fault modifying the length of the
active path can be detected in this way.

A proper test sequence consists of an alternating bits se-
quence 0101..., as long as the active path length followed by
a sequence terminator, such as two consecutive 0s or 1s. For
example, if the network in Fig. 2 is configured to C8 (see
Table I), a proper test vector is 01010101011, that is, 9 bits
of alternated 0s and 1s followed by the sequence terminator.
Faults affecting the network may corrupt the test vector in
such a way that the sequence terminator is observed on the
scan output in an unexpected clock cycle. For example, if a
stuck-at fault affects the selection of the module SIB1 (which
is supposed to be asserted in the fault-free scenario), then the
network may exclude the SIB1’s controlled segment, as in the

TABLE I
SET OF POSSIBLE CONFIGURATIONS OF THE RSN IN FIG. 2.

Config. SIB1 SIB2 SIB3 SM Active path Len.
C0

D
D

D

0

- 2C1 1
C4 A 0
C5 1
C2

D
D

A

0

TDR5 15C3 1
C6 A 0
C7 1
C8 A D D 0 TDR1 9C9 1
C10 A D A 0 TDR1, TDR5 14C11 1
C12 A A D 0 TDR1, TDR2, TDR3 22
C13 A A D 1 TDR1, TDR2, TDR4 23
C14 A A A 0 TDR1, TDR2, TDR3, TDR5 35
C15 A A A 1 TDR1, TDR2, TDR4, TDR5 36

SIB1’s de-asserted case. Thus, the active path selected in such
a faulty scenario would be the same of the configuration C0

of Table I. In the faulty scenario, the path length is 2, meaning
that the sequence terminator is observed earlier than expected
on the scan output pin.

III. PROPOSED APPROACH

In the proposed approach, the RSN of IEEE 1687 is mod-
eled as a finite state automaton (FSA). Each state corresponds
to a configuration, that is, a determinate state of SIBs and SMs
in the network; the input alphabet corresponds to reconfigu-
ration operations; the output symbols are the lengths of the
network, as this is an easily observable characteristic [9]. The
high-level model is deliberately not complete, that is, the FSA’s
states encode only a subset of the possible configurations. As
not all transitions are possible in all states, either due to the
physical configuration of the RSN or to missing states in the
FSA, whether an input does not correspond to a transition, the
FSA is brought to a special sink state with no output transitions
and a null output symbol.

Faults taken into consideration are high-level stuck-at faults
affecting SIBs and SMs. Such faults are mapped to multiple
transition fault on the high-level automaton, as the same
configuration operations may result in different network sta-
tuses on faulty circuits, and the goal of the automatic test
program generation is to devise a sequence of inputs able to
discriminate between the faulty automata and the good one.

The proposed algorithm is based on a greedy search. While
the simulation of the automaton is exact, the method is
approximate because it does not consider all possible states nor
all possible input symbols, and, consequently, not all possible
transitions. Nevertheless, the approximation is conservative
with respect to testability, as any missing state or transition
will cause the automaton to reach the sink state, that by
construction cannot be further distinguished from any other
state.

The complexity of the proposed approach is linear on the
number of states ns times the size of the input alphabet Ain,
that is O(ns · |Ain|). As both terms depend linearly on the
number of configuration bits ncb, the complexity is definitely

smaller than the A* algorithm presented in [10], where the
search space was O(2ncb).

A. Finite State Automaton

The FSA is built incrementally. The FSA is initially com-
posed of only of a state with no output transition and a null
output symbol. Such sink state can not be distinguished from
any other state, and, once entered, the FSA is not able to
leave it. It is used to denote a pathological condition, where
the algorithm is not able to provide reliable results due to the
approximation of the model. Next, the reset state, when all
configuration bits are set to zero, is added to the automaton.
Then, for each SIBi, two states are created: one with the SIB
asserted and one with the SIB de-asserted. For each SM, one
state is created for each possible output configuration. Such
a straightforward approach, however, is not always sufficient.
Scan chains may be nested, and a resource accessible only
when its parent SIB is asserted. The procedure for building the
FSA detects such situations, and creates the necessary states
to handle them. The transitions from the reset state to all these
states are eventually added.

For instance, SIB2 in Fig. 3 is only accessible when
SIB1 is asserted. Therefore, the FSA would include the reset
state (SIB1,SIB2,SIB3); the three states with only one SIB
asserted { (SIB1, SIB2, SIB3), (SIB1, SIB2, SIB3), (SIB1,
SIB2, SIB3) }; and the state (SIB1, SIB2, SIB3), as asserting
SIB1 is necessary to test SIB2.

Then, for each transition in the good automaton, the possible
faulty transition are added, and whether the faulty transition
would bring the automaton in a configuration not already
encoded as a state, that specific state is added to the FSA.
All missing transitions between existing states are also added
to the automaton. Eventually, all possible faulty transition from
all existing states are also added, but if one would bring
the automaton in a configuration not encoded as a state, its
destination is set to the sink state, meaning that the FSA is
unable to model such situation.

As almost only the states with a hamming distance of 1
from the reset state are added to the FSA, the size of the
automaton is linear in the number of configuration bits. It is
possible to define an automaton with more states: for instance,
at some point of the creation, all complementary states may
be added as well; or all states at a hamming distance of
2 from the reset state can be considered. It is important to
remember that the size of the automaton influences both the
quality of the results and the performance of the algorithm.
Experimental evaluations indicate that such extensions are not
quite beneficial, but the designers may explicitly add relevant

SIB
3

SIB
1

TDR
1

TDR
3

SIB
2

TDR
2

SIB
3

SIB
1

TDR
1

TDR
3

SIB
2

TDR
2

Fig. 3. Example of generating input symbols for SIB RSN.

states to this state or provide an additional heuristic.

B. Search Algorithm

The search algorithm builds a test sequence as a sequence
of transition and observation steps. During a transition, a
sequence of bits is fed into the scan chain, bringing the RSN
in a given configuration; such operation corresponds to one or
more input symbols in the FSA. During an observation, the
length of the scan chain is measured; the operation does not
affect the FSA.

In more practical terms, the goal of the test generation is
to find a short and effective sequence that brings the good
circuit and the faulty ones in states where the scan chain is
of different lengths; then, to observe the length and detect
the faults. Indeed, not all transitions and not all observations
require the same number of clock cycles to be performed. The
search algorithm aims at minimizing the length of the test
sequence with respect to the number of actual clock cycles
required to execute all transitions and observations.

Let x be an input symbol for the FSA. The reset operation is
denoted with reset, and it requires a single clock cycle to be
performed. A sequence t of inputs t = (reset, x0, x1, ..., xi)
unequivocally defines the state of the FSA. Let s̄t be the state
of the FSA representing the fault-free circuit after the appli-
cation of the input sequence t, and let St = {s0t , s1t , ..., sn−1t }
be the set of the states of the FSA representing the n faulty
circuits. St depends on the full sequence t, and some faulty
circuits may be in the correct state, thus s̄t ∈ St. It is possible
that a fault also effects the reset state, while such a possibility
is easily tractable by the proposed methodology, it was not
considered in this work.

Let DF(s̄,F) be the set of potentially detectable faults when
the good machine is in state s̄ and the faulty ones in F =
(s0, s1, ..., sf), that is, the set of all faults that caused the faulty
machine to be in a state si with an output symbol different
from s̄. If an observation is performed, measuring the actual
length of the RSN, any difference would be observed and all
such faults, detected.

Given a sequence of inputs t, the function GREEDY extends
it with the most promising input symbol (Fig. 4). That is,
it appends the input symbol that brings the FSA where the
highest number of faults could be detected. If no new fault
can be detected by adding a single transition, the function
returns an empty input sequence.

The search algorithm incrementally builds the test sequence
t calling the function GREEDY iteratively (Fig. 5). In every

Fig. 4. Greedy step
function GREEDY(t)

m← () . Empty sequence of inputs
for x ∈ {valid input symbols in s̄t} do

u← t
Append x to u
if |DF(s̄u,Su)| > |DF(s̄m,Sm)| then

m← u
return m . Most promising sequence

Fig. 5. Test Sequence Generation
procedure TPG

t← (reset) . Initial test sequence
H← {t} . History
F← {all detectable faults} . Active faults
while |F| 6= 0 do

g← Greedy(t)
if empty(g) then . The greedy failed

Append reset to t . Start over
for t′ ∈ H do

g′ ← Greedy(t′)
if |DF(s̄g′ ,Sg′)| > |DF(s̄g,Sg)| then

g← g′ . Alternative sequence
Append g to t
Append observe to t
H← H ∪ {g} . Save sequence
Remove DF(s̄g,Sg) from F

step, the most useful symbol is appended to the test sequence;
however, if it is not possible to detect new faults by adding
a single symbol, the FSA is rolled back to a previous state
where a useful input symbol may be found.

The symbol observe is used to denote an observation
operation in the test sequence. Although it has no effect on the
FSA, its cost in terms of clock cycles needs to be considered.

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed algorithm has been
evaluated on a sub-set of the ITC16 suite of benchmark
reconfigurable scan networks. Some networks included in the
benchmarks have not been considered since they include some
constructs that are not currently supported by our environment.
The algorithm proposed in this paper has been compared
against two alternative approaches. The first approach has
been derived from [9] and is referred to as depth-first in this
paper. The approach is based on the exploration of the network
topology performing a depth-first search of active faults in the
network. The second approach has been proposed in [11] and
is referred to as evolutionary in this paper. The approach makes
use of an evolutionary framework to generate a test sequence
possibly able to minimize the test time.

Basic information about the networks used for evaluation
are reported in Table II. For each network, the table reports
the number of SIBs (column 2) and SMs (column 3). The
fourth column refers to the number of configuration bits of
SIBs and SMs. The column Max depth indicates the maximum
hierarchical depth of each network (for SIB-based networks
this value equals to the maximum number of nested SIBs,
according to [14]).

Experiments were run using a tool written in Java. The tool
supports network structure extraction from files in different
formats including ICL. The experiments were run on a lap-
top equipped with an Intel i5-480M processor. Experimental
results are reported in Table III. The table shows the number
of configuration vectors cv (column 2) and test vectors tv

TABLE II
ITC’16 BENCHMARK NETWORKS LIST

Network SIB SM Tot.
bits

Max
depth

Max
path

Scan
cells

Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat Ex 57 3 62 5 5,100 5,195
TreeUnbalanced 28 – 28 11 42,630 42,630
a586710 – 32 32 4 42,381 42,410
p22810 270 – 270 2 30,356 30,356
p34392 – 96 96 4 27,899 27,990
p93791 – 596 596 4 100,709 101,291
q12710 27 – 27 2 26,185 26,185
t512505 159 – 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 95,158
N73D14 29 17 46 12 190,526 218,869
NE1200P430 381 430 23 4 88,471 108,148
NE600P150 207 194 46 12 23,423 28,250

(column 3) generated by the tool. Moreover, the table reports
the number of clock cycles required to configure the network
(column 4) and the number of clock cycles needed to apply
test vectors (column 5).

The number of clock cycles required for every configura-
tion phase, which includes the length of the currently active
path, has been increased by five (JTAG overhead) [11]. In
addition, the same overhead has been taken into account for
calculating the cost of test phase. This cost consists of the
length of the longest path and the length of the currently active
path increased by two (test pattern termination symbols).
All modeled, detectable faults were detected in each of the
experiments, thus reaching full coverage.

Experimental comparison of the proposed approach against
the depth-first and evolutionary approaches is shown in Ta-
ble IV. Data concerning evolutionary approach are taken from
[11]. For the depth-first approach, data have been newly
generated on the ITC16 benchmarks by running the tool
implementing the same algorithm as in [9]. For each algorithm,
Table IV reports the duration in clock cycles of the generated

TABLE III
IEEE 1687 TEST ALGORITHM EXPERIMENTAL RESULTS

Network cv tv Conf. time [cc] Test time [cc]
Mingle 6 7 330 1,684
TreeBal. 7 8 7,325 56,518
TreeFlat Ex 5 6 5,398 36,485
TreeUnbal. 11 12 86,651 632,724
a586710 4 5 764 296,032
p22810 2 3 573 151,826
p34392 4 5 410 195,144
p93791 4 5 1,291 704,951
q12710 2 3 43 130,979
t512505 2 3 494 384,946
N132D4 5 6 7,170 24,825
N17D3 4 5 758 3,007
N32D6 4 5 147,162 669,472
N73D14 12 13 868,652 3,508,797
NE1200P430 127 128 1,710,412 13,084,445
NE600P150 78 79 413,697 2,280,975

TABLE IV
EXPERIMENTAL RESULTS COMPARISON

Network Total test time [cc] Runtime (wall clock)
FSA Depth-first FSA vs. d-f Evolutionary FSA vs. evol. FSA Depth-first Evolutionary

Mingle 2,014 2,282 13.31% 2,078 3.18% 26s 1s 8h
TreeBalanced 63,843 69,369 8.66% 69,369 8.66% 48s 1s 19h
TreeFlat Ex 41,883 71,341 70.33% 55,776 33.17% 71s 1s 8h
TreeUnbalanced 719,375 1,071,799 48.99% 1,042,450 44.91% 34s 1s 5h
a586710 296,796 299,624 0.95% 298,241 0.49% 39s 1s 8h
p22810 152,399 152,937 0.35% 152,937 0.35% 39s 1s 9h
p34392 195,554 196,702 0.59% 196,505 0.49% 1m 1s 7h
p93791 706,242 708,878 0.37% 708,878 0.37% 2m 1s 27h
q12710 131,022 131,022 0.00% 131,022 0.00% 46s 1s 5h
t512505 385,440 386,024 0.15% 386,024 0.15% 50s 1s 8h
N132D4 31,995 38,731 21.05% 37,257 16.45% 2s 1s 3h
N17D3 3,765 4,143 10.04% 3,851 2.28% 1s 1s 5h
N32D6 816,634 942,470 15.41% 893,017 9.35% 6s 1s 5h
N73D14 4,377,449 5,978,047 36.56% 5,967,137 36.32% 97s 3s 3h
NE1200P430 14,794,857 21,515,705 45.43% 21,515,705 45.43% 1h 3s 50h
NE600P150 2,694,672 3,726,726 38.30% 3,726,726 38.30% 4m 3s 12h

test sequence (referred to as Total test time) and the CPU time
required to apply the algorithm (referred to as Runtime).

Remarkably, results in Table IV show an improvement in
terms of test time reduction up to 70% in comparison to depth-
first, and up to 45% with respect to the evolutionary method.
Moreover, the test sequence generated by the proposed ap-
proach is shorter than the sequences obtained by the other
algorithms in all networks but one (i.e., q12710); in such a
network, the three algorithms produce test sequences having
the same duration.

Concerning the runtime, as Java’s non-determinism prevents
an accurate timing, only the total time is reported for all
programs (wall-clock). The proposed algorithm completes in
the order of seconds, while one hour was required only for
one network (NE1200P430). The depth-first algorithm is very
fast to execute, even for large networks. The evolutionary
approach, on the other hand, requires hours. Moreover, the
evolutionary approach was run on a multi-core server, exploit-
ing parallelism, while a simple laptop has been used to run
the proposed approach.

V. CONCLUSIONS

The paper describes an efficient technique for generating
sequences for testing the IEEE 1687 RSNs. The approach
can be defined as a semi-formal because the FSA that models
the circuit is exact, but incomplete, and the search procedure
is based on a greedy algorithm. Experimental results on the
ITC’16 benchmark suite clearly demonstrate the effectiveness
of the approach: the proposed technique is able to achieve
better results with less computation effort than previous heuris-
tics. The technique may be easily extended to handle different
fault models and more complex scenarios, and experts’ knowl-
edge could be exploited by tweaking the FSA states and input
alphabet. We are currently performing further experiments to
better understand the limitations of the proposed method.

REFERENCES

[1] S. Narayanan and M. A. Breuer, “Reconfigurable scan chains: A novel
approach to reduce test application time,” in Proceedings of the 1993

IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society Press, 1993, pp. 710–715.

[2] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, Dec
2014.

[3] “IEEE standard for test access port and boundary-scan architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
May 2013.

[4] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Design
automation for IEEE p1687,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[5] A. T. Dahbura, M. U. Uyar, and C. W. Yau, “An optimal test sequence
for the jtag/ieee p1149. 1 test access port controller,” in Test Conference,
1989. Proceedings. Meeting the Tests of Time., International. IEEE,
1989, pp. 55–62.

[6] K.-J. Lee and M. A. Breuer, “A universal test sequence for cmos scan
registers,” in Custom Integrated Circuits Conference, 1990., Proceedings
of the IEEE 1990. IEEE, 1990, pp. 28–5.

[7] S. Maka and E. J. McCluskey, “Atpg for scan chain latches and flip-
flops,” in VLSI Test Symposium, 1997., 15th IEEE. IEEE, 1997, pp.
364–369.

[8] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “On the detectability of scan chain internal faults an industrial case
study,” in VLSI Test Symposium, 2008. VTS 2008. 26th IEEE. IEEE,
2008, pp. 79–84.

[9] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Lars-
son, “On the testability of IEEE 1687 networks,” in Test Symposium
(ATS), 2015 IEEE 24th Asian. IEEE, 2015, pp. 211–216.

[10] R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda, “Test time
minimization in reconfigurable scan networks,” in Asian Test Symposium
(ATS), 2016 IEEE 25th. IEEE, 2016, pp. 119–124.

[11] R. Cantoro, L. San Paolo, M. Sonza Reorda, and G. Squillero, “New
techniques for reducing the duration of reconfigurable scan network
test,” in Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2018 IEEE 21th International Symposium on. IEEE, 2018
(submitted).

[12] A. Tšertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Test Conference (ITC), 2016 IEEE
International. IEEE, 2016, pp. 1–10.

[13] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wun-
derlich, “Formal verification of secure reconfigurable scan network
infrastructure,” in Test Symposium (ETS), 2016 21th IEEE European.
IEEE, 2016, pp. 1–6.

[14] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Test Conference (ITC), 2016 IEEE
International. IEEE, 2016, pp. 1–10.

