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Highlights 

 

 We discuss a trend observed across multiple drug target families that relates the human 

pharmacology of drugs and endogenous ligands. 

 Overall, there is a two order of magnitude shift when comparing primary target bioactivity of 

drugs and their associated endogenous ligands. 

 Endogenous ligand bioactivity can serve as baseline for ligand optimization in drug discovery. 

 Comparing endogenous ligand with off-target bioactivity of drugs can inform the process of drug 

safety risk evaluation. 

 

We have limited understanding of the variation in in vitro affinities of drugs for their targets. An analysis of a highly curated 

set of 442 interactions between 293 drugs and 79 primary targets reveals that 67% of drug–target affinities have values 

above that of the corresponding endogenous ligand, 96% of them fitting within a range of two orders of magnitude. Our 

findings suggest that the evolutionary optimised affinity of endogenous ligands for their native proteins can serve as a 

baseline for the primary pharmacology of drugs. We show that the degree of off-target selectivity and safety risks of drugs 

derived from their secondary pharmacology depend very much on that baseline. Thus, we propose a new approach for 

estimating safety margins. 

Keywords: endogenous metabolites; drug design; drug efficacy; drug safety; safety margins. 

Teaser: Two-thirds of drugs have more-potent in vitro affinities for their primary targets than those of the 

corresponding endogenous ligands, which define a baseline to estimate off-target safety margins. 
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Introduction 

Drugs exert their therapeutic action by interacting with one (or more) disease-relevant protein(s). The final potency 

of this interaction is the result of a long optimisation process, in which multiple pharmacodynamic (PD) and 

pharmacokinetic (PK) parameters need to be taken into consideration within the context of a complex neighbourhood 

of activities [1,2]. In this respect, a common strategy followed during lead optimisation is to maximise in vitro binding 

affinity for the primary (mechanism of action) target(s) of the drug as a means to improve target selectivity and 

reduce secondary (off-target) affinities potentially linked to safety issues [3]. Compound potency is generally expected 

to decrease in an in vivo environment because of several factors, mostly associated with the compound absorption, 

distribution, and metabolism [4,5]. Accordingly, the finally selected drug candidate is unlikely to be the molecule 

having the strongest affinity value but the one showing an optimal balance between all properties [6]. 

This might explain, in part, the substantial variation of binding affinities observed for drugs targeting not only 

the same protein but also across different proteins [7]. For example, the serotonin receptor subtype 1A (5HT1A) is 

one of the protein targets involved in the mechanisms of action of brexpiprazole and vortioxetine [7]. However, 

whereas brexpiprazole binds to this receptor with subnanomolar affinity (pKi = 9.9), the corresponding in vitro 

binding affinity for vortioxetine is more than two orders of magnitude lower (pKi = 7.8). The variation in 

physicochemical properties (as estimated by the octanol-water partition coefficient and aqueous solubility), which is 

less than a log unit, does not offer a valid explanation for this difference. This is in stark contrast to the micromolar 

affinity (pKi = 5.6) of theophylline for the adenosine receptor 2b (AA2BR), which is one of its mechanism of action 

targets [7]. Gaining a deeper understanding as to why drugs might require achieving certain levels of affinity for 

their primary target(s) and why these levels of affinity could be considerably different because of efficacy and receptor 

reserve across primary target(s) is at the core of modern preclinical drug discovery. 

In humans, most drug targets are proteins the function of which is regulated by endogenous ligands or metabolites, 

understood here not as the products of drug metabolism [8] but as those naturally occurring small molecules of human 

metabolism [9–11]. The human endogenous metabolome is estimated to contain a few thousand chemical species [12]. 

Each endogenous ligand binds to its native protein with a certain affinity that has been sensitively optimised by 

evolution and that might subtlety vary across individuals [13]. For example, the subnanomolar affinity (pKi = 9.1–

9.7) of serotonin for 5HT1A contrasts with the low micromolar affinity (pKi = 4.82) of adenosine for AA2BR [14]. 

Interestingly, the natural affinities between these two endogenous ligands and their respective native proteins 

compare well with some of the designed affinities for the drugs having those native proteins as primary targets (see 

earlier). These observations prompted us to investigate whether there is a general trend across drug targets relating 

the pharmacology of drugs and human endogenous ligands. In addition, we examined also whether the same holds 

true for the catalytic activities of human endogenous substrates and drugs for their respective enzyme targets. 

The results obtained were consistent with most drugs having in vitro affinities for their primary target(s) above 

those of the corresponding metabolite and/or substrate–target interaction. Here, we also discuss the implications for 

secondary pharmacology and off-target safety margins derived from it [15]. In particular, we analyse in detail the 

case of drug-induced valvular heart disease when the small molecule drug is an agonist of the serotonin 5HT2B 

receptor. 

Primary pharmacology of drugs and endogenous ligands 

In vitro binding affinities for drug–target interactions linked to the mechanism of action of the drug were retrieved 

from the DrugCentral repository [7]. The list of unique human primary targets involved in those interactions was 

then used to interrogate the Guide to Pharmacology database (GtoPdb) to identify the native endogenous ligand 

(metabolite) of each one of them and extract the maximum affinity value reported [14]. For the sake of comparison, 
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drug–target–metabolite triad associations were only accepted if they had been measured using the same units for 

the binding affinity (pKi or pKd) or, in its absence, for the potency (pIC50 or pEC50) (see Box 1 for further methodology 

details). Although measurements of IC50 and EC50 values are assay specific, it has been shown that independent IC50 

data show similar dispersions to Ki data in ChEMBL [16]. After careful curation, a total of 442 drug–target–

metabolite triads were compiled, involving 293 drugs, 79 targets, and 43 endogenous ligands (Table S1 in the 

supplemental information online). Most triads (90%) involved Ki binding affinities. 

The 442 pairs of drug and metabolite affinities for the same protein are plotted in Figure 1. On average, drug 

affinities were found to be over 20-fold higher than the corresponding metabolite affinities, with median negative 

logarithm affinities of 8.52 and 7.20, respectively. If there was a perfect correlation between drug and metabolite 

affinities, data points would follow the diagonal solid line. If the affinities of the endogenous metabolites were 

stronger than the corresponding drug affinities, data points would be expected to gather below the diagonal line, in 

the lower triangle region. However, the density plot derived from the data distribution reveals a clear accumulation 

of points above the diagonal line, in the upper triangle region. Indeed, 67% of the 442 drug affinities for their primary 

target(s) were higher than the corresponding metabolite–target interactions (solid-grey line in Figure 1). This 

percentage increased to 85% and 96% when considering drug affinities one order and two orders of magnitude 

(dashed-grey line in Figure 1) below metabolite affinities, respectively. 

Only 4% of drug affinities for primary target(s) were found to be over 100-fold lower than the corresponding 

metabolite affinities (Table S2 in the supplemental information online). A close examination of these 19 drug–target 

interactions suggests that the assignment of the interacting protein as primary target of the drug would benefit from 

a careful revision. For example, oxymorphone is a semisynthetic opioid analgesic that has all three opioid receptors 

(μ, δ, and κ) assigned as mechanism of action targets with binding affinities (pKi) of 9.44, 7.30, and 6.83, respectively 

[7]. However, the affinity of oxymorphone for the κ opioid receptor is almost four orders of magnitude lower than the 

affinity for dynorphin A (pKi = 10.80), its native endogenous metabolite. This suggests that the analgesic effect of 

oxymorphone is unlikely to be conducted through the activation of the κ opioid receptor, but mainly through its action 

on the μ opioid receptor, as some literature suggests [17–19]. Another drug found to be an outlier is tramadol, believed 

to exert its analgesic function via the μ opioid receptor. Yet, its binding affinity (pKi = 5.8) is almost over three orders 

of magnitude lower than the affinity of the corresponding endogenous ligand, dynorphin B (pKi = 8.5), suggesting 

that its therapeutic action is unlikely to be the result solely of its interaction with the μ opioid receptor. Indeed, 

tramadol is not a singular opioid drug, but an analgesic with several contributing components coming from its rich 

polypharmacology for the sodium-dependent serotonin, noradrenaline, and dopamine transporters, among others [7]. 

Interestingly, some studies have suggested that the tramadol-induced analgesic effect is produced, at least in part, 

by one of its metabolites, which binds with higher affinity to the μ opioid receptor (pKi = 6.82) well within two orders 

of magnitude from that of the native endogenous metabolite [20]. Along the same lines, the assignment of the 

prostaglandin F2-alpha (PGF2a) receptor as the mechanism of action target of bimatoprost, a prostaglandin analog 

used in the treatment of glaucoma and ocular hypertension, is open to debate. The affinity of bimatoprost for that 

receptor (pKi = 5.30) is over three orders magnitude lower than the affinity reported for the PGF2a endogenous ligand 

(pKi = 8.5), suggesting that the PGF2a receptor is not the primary target responsible for the therapeutic effect of 

bimatoprost. Along these lines, some studies have reported no meaningful activity of bimatoprost for the 

prostaglandin receptors and proposed a novel prostamide-sensitive receptor as the probable primary and functional 

target for bimatoprost [21–23]. Similarly, the primary targets assigned to methoxamine are the 1A, 1B, and 1D 

adrenergic receptors with affinities of 5.1, 4.0, and 4.9, respectively [7]. Yet, the binding affinity of this drug for 1B 

is two and a half orders of magnitude lower than the affinity of (-)-noradrenaline (pKi = 6.5), the native endogenous 

ligand, suggesting that the 1B adrenoceptor is unlikely to have a major role in the mechanism of action of 

methoxamine [24]. 

Analysis of the functional action of the drugs on each target allows for deconvoluting the 442 drug–target 

interactions depicted in Figure 1 into two sets of 160 and 260 interactions that involve drugs acting as agonists and 

antagonists on their targets, respectively (Figure 2). The 160 drug agonist interactions (Figure 2a) involve 109 drugs, 

63 targets, and 37 endogenous ligands, whereas 181 drugs, 42 targets, and 22 endogenous ligands define the 260 

interactions from drug antagonists (Figure 2b). The remaining 22 interactions correspond to drugs being annotated 

as partial agonists (14) or inverse agonists (eight). Interestingly, there are six cases in which the same drug acts as 

an agonist and an antagonist on different targets. This is the case, for example, of agomelatine, a high-affinity agonist 

of melatonin MT1 and MT2 receptors but an antagonist on the serotonin 5HT2C receptor [25], and of flibanserin, a 

serotonin 5HT1A agonist and 5HT2A antagonist [26]. 

The shape of the density plot derived from the 160 interactions involving drug agonists (Figure 2a) follows the 

diagonal line. Compared with Figure 1, not even half (45%) of the 160 drug agonist affinities for their primary 

target(s) are higher than the corresponding metabolite–target interactions (solid-grey line in Figure 2a), although 

this percentage increases up to 91% if a drug–metabolite affinity window of minus two orders of magnitude is 

considered (dashed-grey line in Figure 2a). This is a reflection of the fact that drug agonists and endogenous ligands 

tend to have rather similar affinities for their common protein targets across the full range of affinity values. By 

contrast, the 260 interactions from drug antagonists appear concentrated well above the diagonal line, with a clear 

shift towards targets with low-affinity endogenous ligands compared with drug agonists. In this case, over three-

quarters (79%) of the 260 drug antagonist affinities for their mechanism of action target(s) already have higher 

affinity values than the corresponding metabolite–target interactions (solid-grey line in Figure 2b), with 98% of them 
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fitting within a range of two orders of magnitude below the endogenous ligand affinities (dashed-grey line in Figure 

2b). In fact, almost two-thirds of the antagonist drug–target interactions (61.5%) have affinity values one order of 

magnitude above the metabolite baseline compared with only one-sixth of the agonist drug–target interactions 

(16.5%). Based on data currently available, this suggests that drug antagonists tend to require higher affinities than 

the endogenous ligands binding to the same target. One possible explanation for this clear difference could be that 

agonist drugs do not need to have much stronger affinities than endogenous ligands because they essentially seek to 

mimic their behaviour to persistently activate the receptor. By contrast, antagonist drugs do need higher affinities 

to completely block the action of endogenous ligands when released. 

Comparing primary pharmacology across drug targets 

A target-centred analysis of the set of 442 interactions provides another perspective of how drug affinities compare 

with endogenous ligand affinities across 79 proteins, 70 G-protein-coupled receptors (GPCRs), and nine nuclear 

hormone receptors. The height of each column in the circular plot of Figure 3 reflects the affinity between a drug 

target and its main endogenous ligand. As can be observed, there are some clear differences between the endogenous 

metabolite affinities across protein families. Even within a particular family, subtle variations exist. For example, 

the endogenous ligands of the serotonin, opioid, somatostatin, vasopressin, and melatonin receptor families show in 

vitro binding affinities in the nanomolar range. By contrast, micromolar affinities appear to be sufficient for the 

endogenous ligands of the acetylcholine (muscarinic), dopamine, and adenosine receptor families. Thus, it appears 

clear that different proteins have evolved to interact with their native metabolites at different levels of affinity, which 

might in turn translate into different lower-bound affinity criteria for any potential drug targeting them. 

As illustrated in Figure 3, the endogenous ligand affinity for each protein sets a baseline above which drug 

affinities might spread. In principle, the lower the affinity baseline, the wider the affinity window allowed for drugs 

to optimise other PD and PK parameters. This is well reflected by the drug affinity distributions for targets having 

different endogenous ligand affinities. For example, serotonin and 17-estradiol both have in vitro binding affinities 

well into the subnanomolar range for 5HT1A (pKi = 9.7) and the estrogen receptor alpha (ESR1; pKi = 9.8), 

respectively. Among the set of 442 interactions, there are six drugs that have 5HT1A as a primary target and their 

pKi values vary from 7.8 (right within the 100-fold difference from the serotonin affinity for 5HT1A) to 9.9. There are 

also six drugs having ESR1 assigned as a mechanism-of-action target and, most interestingly, their affinities cover 

a similar range of pKi values, from 7.5 (close to the 100-fold difference from the 17-estradiol affinity for ESR1) to 

9.7. By contrast, the affinity of serotonin for the serotonin receptor 2A (5HT2A) is approximately one order of 

magnitude lower than that for 5HT1A (pKi = 8.4). This is translated in a distribution of pKi values for the 28 drugs 

having 5HT2A as primary target ranging from 6.5 (within two orders of magnitude from the serotonin affinity for 

5HT2A) to 9.9. Comparably, the case of dopamine for the dopamine D2 receptor (DRD2) sets a relatively lower 

metabolite affinity baseline for this protein (pKi = 7.2). There is a total of 46 drugs having DRD2 as a primary target, 

covering a wide affinity window of pKi values from 5.4 (within the 100-fold difference from the dopamine affinity for 

DRD2) to 10.2. Finally, (-)-noradrenaline has micromolar affinity (pKi = 6.0) for the 1 adrenergic receptor (ADRB1). 

The pKi values of the 25 drugs that were found to have ADRB1 as primary target range from 5.0 (just tenfold below 

the (-)-noradrenaline affinity for ADRB1) to 9.5. 

Figure 4 illustrates these trends for the set of 26 targets for which pKi data are available for more than three drugs 

(Table S1 in the supplemental information online). It is shown that there is a directly proportional relationship 

(Pearson correlation coefficient = 0.71; P = 4.52E-5; r2 = 0.51) between the affinity of an endogenous ligand and the 

minimum affinity of a drug for its primary target (Figure 4a). This suggests that the in vitro binding affinity of the 

endogenous ligand for its native protein is a good reference baseline for the objective primary pharmacology of drugs 

in preclinical research. It is also shown that there is an inversely proportional relationship (Pearson correlation 

coefficient = –0.64; P = 3.8E–4; r2 = 0.41) between endogenous ligand affinities and the range of drug affinities for a 

given target (Figure 4b). This reflects the fact that, for every target, the upper-bound drug affinities reach always 

subnanomolar potencies, whereas the acceptable lower-bound drug affinities decrease relative to the endogenous 

ligand affinity for the drug target. 

Nonetheless, some outliers from these trends are detected, namely, the muscarinic acetylcholine receptor M1 

(ACM1), the κ opioid receptor (OPRK), the  opioid receptor (OPRM) and the 1B adrenergic receptor (ADA1B). Given 

the affinity of acetylcholine for ACM1 (pKi = 4.9), one would expect that, among the 12 drugs identified as having 

ACM1 as primary target, the minimum drug affinity would be close to the 10-m level. However, the minimum 

affinity for ACM1 corresponds currently to diphenidol (pKi = 7.1). The existence of a highly conserved acetylcholine 

binding site among the five muscarinic receptor subtypes could explain higher than expected affinities in the search 

for selective ACM1 drugs. Those differences might also reflect the lack of completeness of pharmacological data [27]. 

Despite the fact they are not represented in the data we analysed, drugs having ACM1 as primary target and with 

pKi affinities around 4 might exist. By contrast, the case of OPRK is completely different. If one disregards 

oxymorphone (discussed earlier), the drug with minimum affinity is nalbuphine (pKi = 8.0), which places OPRK right 

where one would expect. Similarly, discarding the discussed cases of tramadol and methoxamine for OPRM and 

ADA1B, respectively, also pushes those targets up into, or much closer to, the grey zone that one would expect. 

Accordingly, removing ACM1 from the set and placing OPRK, OPRM, and ADA1B to the corresponding position after 

discarding the oxymorphone, tramadol, and methoxamine results in stronger correlations between endogenous ligand 
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affinities and minimum drug affinities (Pearson correlation coefficient = 0.87; P = 1.59E–8; r2 = 0.76) on the one hand, 

and range of drug affinities (Pearson correlation coefficient = –0.79; P = 3.28E-6; r2 = 0.62) on the other hand. 

Extended primary pharmacology of drugs and endogenous ligands 

To assemble the first set of 442 drug–receptor–metabolite triad associations from which trends between the affinities 

of drugs and endogenous ligands for the same target were derived, we relied exclusively on two public sources of 

highly curated data, namely, DrugCentral [7] for drug–target interactions and GtoPdb [14] for metabolite–target 

interactions. To assess the general validity of those trends beyond the set of pharmacological data from which they 

were derived, we collected a second set of 202 additional drug–receptor–metabolite triad associations (Table S3 in 

the supplemental information online) with affinities for drug–target interactions available in DrugCentral [7], 

GtoPdb [14], and ChEMBL [28], and metabolite–target affinities available in GtoPdb [14] and ChEMBL [28]. By 

including new data sources, we mostly added new drug–target interactions for targets already present in the original 

set. However, from the total number of 148 drugs, 57 targets and 35 metabolites involved in those 202 new triads, 

110 drugs, nine targets, and nine metabolites were not represented in the original set. 

The density plot of this extended set of 202 drug–receptor–metabolite triads (Figure S1 in the supplemental 

information online) is similar to the distribution displayed in Figure 1, with 60% of drug affinities being higher than 

the affinities of the endogenous ligand for the same target, and 93% of them fitting within a range of two orders of 

magnitude. When these 202 new triads were added to the original 442 triads, the list of targets for which pKi data 

for more than three drugs were available increased from 26 to 37. Accordingly, Figure 5 represents an expanded 

version of Figure 4, in which the 11 new targets are marked as white circles with thick-black borders. As can be 

observed in Figure 5a, besides the special cases of ADA1B, OPRM, and OPRK (drawn as grey circles) already 

discussed in Figure 4, there are now some other targets inside the ‘forbidden’ zone of minimum drug affinities two 

orders of magnitude below the endogenous metabolite affinities for the same target. One of them is the 1D 

adrenoceptor (ADA1D). After removal of methoxamine (one of the outlier drugs discussed earlier), its position moves 

up significantly. Other targets are the prostaglandin F2-alpha receptor (PF2R), which includes the outlier drug 

bimatoprost, and the androgen receptor (ANDR), which includes the minimum-affinity drug flutamide. Flutamide is 

a nonsteroidal molecule acting as a selective antagonist of ANDR. However, its binding affinity to ANDR (pKi = 5.89) 

is almost four orders of magnitude lower than the affinity of dihydrotestosterone (pKi= 9.7), the native endogenous 

metabolite for ANDR. Interestingly, it has long been proved that the action of flutamide is conducted through one of 

its main metabolites, 2-hydroxyflutamide [29], which has a significantly higher binding affinity for ANDR (pKi=7.65) 

[28]. The removal of flutamide brings ANDR closer to the region of accepted minimum drug affinity for this target. 

Another target marked as outlier in Figure 4, ACM1, now fits well within the expected region as a new drug, 

cevimeline, with a pKi of 4.9, was incorporated in the set. These observations emphasise the importance of data 

completeness in this type of analysis [27]. 

After repositioning of those target outliers in Figure 5a, endogenous ligand affinities for a given protein were 

directly proportional to the currently known minimum affinities of drugs for that protein, with a similar correlation 

to that observed already in Figure 4 (Pearson correlation coefficient = 0.83; P value = 5.49E–10; r2 = 0.68). By contrast, 

the inverse correlation between endogenous ligand affinities and the range of drug affinities for a given target (Figure 

5b) is still significant (Pearson correlation coefficient = –0.57; P value = 3.01E–4; r2 = 0.32), but some of the new 

targets with just three representative drugs show drug affinity ranges clearly below the expected values for their 

respective targets. As already mentioned, this type of analyses is especially sensitive to data completeness and the 

range of drug affinities are susceptible to variations as new drugs are included. As can be observed, most of the 

targets located well below the correlation line are in fact targets with a small number of drugs (three), whereas 

targets with more representative drugs cover the full range of drug affinities from the baseline set by the endogenous 

ligand affinity up to nanomolar potencies. 

Extended primary pharmacology of drugs and endogenous substrates 

To assess the validity of trends observed for receptors on other protein families, we compiled a second external 

biochemistry dataset of in vitro binding affinities of drugs and endogenous substrates for enzymes. Accordingly, drug–

enzyme interactions were retrieved from the DrugCentral repository [7]. The list of unique human enzymes involved 

in the mechanism of action of drugs was then used to interrogate the BRaunschweig ENzyme DAtabase (BRENDA) 

[30] to identify the endogenous substrate for each enzyme target and to extract its corresponding maximum Michaelis 

constant value, KM = (k–1 + k2)/k1, where (k–1 + k2) is the rate of breakdown and k1 is the rate of product formation. 

For the sake of simplicity, we consider KM as an estimate of the dissociation constant for the enzyme–substrate 

complex when k2 << k–1 (thus, KM ~ k–1/k1). Under these conditions, KM can be directly compared with Ki values (i.e., 

with the dissociation constants of the enzyme–inhibitor complex). To achieve effective inhibition, Ki values for 

competitive inhibitors would need to be higher than KM values, on the negative log(molar) scale, to overcome the 

effect of accumulating substrate. This is not relevant for covalent inhibitors, which maintain effectiveness regardless 

of increasing substrate concentration, and for allosteric inhibitors, which bind to a noncanonical site and, thus, do 

not compete with the endogenous substrate. 

A total of 222 drug–enzyme–substrate triad associations were collected, involving 164 approved drugs, 41 

mechanism of action enzymes, and 32 human endogenous substrates (Table S4 in the supplemental information 

online). The density plot of drug and endogenous substrate affinities for the same enzyme shows a clear accumulation 

of interactions above the diagonal solid line (Figure S2 in the supplemental information online). From a target-
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centred perspective, analogous to Figure 3 for receptors, Figure 6 allows for assessing how the 222 drug affinities 

compare with the corresponding endogenous substrate affinities across all 41 enzymes. The darker tip of each column 

in the circular plot of Figure 6 reflects the affinity between the enzyme and its main endogenous substrate. Compared 

with earlier findings on drug–receptor interactions, for which 96% of drug affinities for their primary targets are two 

orders of magnitude lower than the corresponding endogenous metabolite affinities, we found that 88% of the drug–

enzyme interactions have affinity values above the affinity of the natural substrate of the enzyme, with 78% and 60% 

of drug–enzyme affinities being at least one and two orders of magnitude higher than the corresponding substrate–

enzyme affinities, respectively. This represents a two order of magnitude shift for drug–enzyme affinities relative to 

their endogenous substrates compared with drug–receptor affinities relative to their endogenous ligands. 

Impact on secondary pharmacology: the case of 5HT2B 

The difference of two orders of magnitude below the endogenous ligand affinity for a drug affinity to be biologically 

relevant can have important implications beyond primary pharmacology. In this respect, there is currently ample 

evidence that drugs bind to multiple proteins [31]. This polypharmacology is of particular concern for drugs targeting 

GPCRs [32], given that it has been estimated that, on average, they can have biologically relevant binding affinities 

for up to ten members of this protein family [33]. Although some of this secondary pharmacology might be necessary 

for the efficacy of drugs addressing complex diseases [34], binding to certain off-targets can lead to serious drug safety 

issues [35]. 

One of these red-flag off-targets is the serotonin receptor 5HT2B. Small-molecule drugs acting as 5HT2B agonists 

have long been associated with valvular heart disease (VHD) [36] and most new drug submissions to regulatory 

agencies require now both binding and functional testing to assess 5HT2B agonist activity. In this respect, a recent 

report from a regulatory agency on the use of in vitro secondary pharmacology to assess the risk of VHD concluded 

that safety margins based on in vitro binding affinities (pKi), or those relative to serotonin, appear to be a better 

predictor for determining the risk of a 5HT2B agonist to produce VHD compared with measures involving the 

maximum therapeutic free plasma drug concentration in vivo [37]. Most interestingly, they observed that 

nonvalvulopathic 5HT2B agonist drugs have a pKi value over two orders of magnitude lower than that of serotonin 

[37]. Even though their analysis was limited to nine drugs, the suggestion of a 100-fold difference in Ki values between 

the in vitro affinities of the endogenous ligand and the drug for the off-target agrees well with the trends observed in 

the current on the basis of 442 interactions for 293 drugs. 

To assess how the link between in vitro binding affinities of 5HT2B agonists and VHD would fit within the 

framework established here, we extended from nine to 24 the set of 5HT2B agonists with VHD information. Among 

them, 12 are known valvulopathic drugs [37–45], whereas the other 12 are assumed to be nonvalvulopathic, given 

that no bibliographic evidence of links to VHD was found. All binding (pKi) and VHD risk data for these 24 5HT2B 

agonist drugs are provided in Table S5 in the supplemental information online. The distribution of in vitro binding 

affinities of the 24 5HT2B agonists is provided in Figure 7, which is analogous to Figure 1 but centred solely on the 

serotonin affinity for 5HT2B (pKi = 8.4). 

As can be observed, there is a clear separation between valvulopathic (in red) and nonvalvulopathic (in green) 

drugs. Of the 12 valvulopathic drugs, five (42%) have pKi values equal to or larger than the serotonin affinity, seven 

(58%) within an order of magnitude of the serotonin affinity, and 11 (92%) within two orders of magnitude of the 

serotonin affinity. Only one of them, dexfenfluramine, has a pKi value clearly below this two-order of magnitude 

window, although its racemic mixture, fenfluramine, is right at the edge of it (pKi = 6.4). In fact, it was the case of 

fenfluramine that alerted researchers almost 20 years ago to the fact that its more potent 5HT2B agonist metabolite, 

norfenfluramine, could be responsible for its associated risk for VHD [46,47]. Indeed, the binding affinity of 

norfenfluramine for 5HT2B (pKi = 7.28) puts this drug metabolite well into the risk zone for VHD. By contrast, of the 

12 nonvalvulopathic drugs, seven (58%) have pKi values below the two order of magnitude mark of the serotonin 

affinity. The five nonvalvulopathic drugs found within two orders of magnitude of the serotonin affinity are tretinoin, 

oxymetazoline, lorcaserin, 5-MEO-DMT, and lysergide. Interestingly, clinical monitoring on the risk of VHD has been 

already recommended for lorcaserin [37]. 

Overall, our work confirms and strengthens the early recommendation that a 100-fold difference in Ki values 

between the serotonin and drug affinities for 5HT2B is a reasonable criterion to discriminate valvulopathic from 

nonvalvulopathic drugs [37]. This notwithstanding, one ought to consider the effects of data dispersion in binding 

affinities, which could alter, in one direction or another, the final ability of a drug to produce VHD. As an example, 

we took as a reference value from Figure 7 the maximum affinity of serotonin for 5HT2B reported in GtoPdb (pKi = 

8.4). However, the corresponding binding affinities found in other public sources differ slightly. For example, the pKi 

values in ChEMBL and PDSP are 7.9 and 9.1, respectively [28,48]. Considering these pKi values in Figure 7, the 

serotonin affinity in ChEMBL (pKi = 7.9) would move the entire drug affinity distribution to the left, which would 

cause the nonvalvulopathic drugs isotretinoin and troglitazone to enter the grey zone. However, the serotonin affinity 

in PDSP (pKi = 9.1) would move the entire drug affinity distribution to the right, which would then result in ten out 

of the 12 nonvalvulopathic drugs being safely placed below the two-order of magnitude window. Thus, data robustness 

and dispersion are important aspects to consider in this type of analysis. 

Implications for initial assessments of safety margins 

Many drug safety events are caused by the interaction of drugs with their own primary targets or with secondary 

(off-)targets. To lower the chance for undesirable off-target effects, in vitro safety pharmacology profiling is now an 
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integral part of preclinical drug discovery [3] and its utility for the early risk assessment of drug-induced safety 

events has been well recognised [36]. Normally, off-target safety margins are defined by dividing the concentration 

of the drug that is required for 50% off-target inhibition in vitro (IC50) by the maximum plasma concentration of the 

drug in vivo (Cmax) [49]. However, in vivo Cmax values are unlikely to be collected for large numbers of compounds 

during the early stages of a drug discovery project and, in addition, it was recently shown that, at least for 5HT2B, 

safety margins based on in vitro binding affinities (Ki values), or those relative to the endogenous ligand, are better 

safety predictors than the use of in vivo Cmax values [36]. This prompted us to elaborate on this aspect based on the 

results presented earlier. 

Strategies to widen the off-target safety margins involve increasing the potency of the drug for the primary target 

and decreasing the potency of the drug for the off-target [49]. In this respect, the objective is usually to achieve a 30- 

to 100-fold selectivity between the affinities for the primary target, pKi(pT), and the off-target, pKi(oT) [36,49]. 

However, the outcomes presented earlier could change the perspective from which off-target safety margins have 

been traditionally regarded. The concept is illustrated in Figure 8a for two hypothetical drugs (labelled as 1 and 2) 

representing two opposite case scenarios: on the one hand, the affinity of drug 1 for its primary target (circle labelled 

as pT1) is 100-fold higher than the affinity for one of its off-targets (orange square labelled as oT1), yet both values 

are above the affinities of the respective endogenous ligands for pT1 and oT1 and, thus, both are likely to be biologically 

relevant; on the other hand, the affinity of drug 2 for its primary target (circle labelled as pT2) is tenfold lower than 

that for one of its off-targets (green square labelled as oT2), and the latter is much lower than the affinity of the 

corresponding endogenous ligand for oT2, thus below the grey zone of potential safety risk associated with the oT2 

interaction (see Figure 7). The result is that, despite its 100-fold selectivity, drug 1 might be at risk of producing the 

safety issue associated with affinity to oT1, whereas the lack of selectivity might not be an issue for drug 2 to be safe 

of the adverse event linked to oT2. 

Among the list of 5HT2B agonist drugs discussed earlier (Figure 7), bromocriptine and troglitazone are case 

studies resembling the hypothetical examples of drugs 1 and 2 in Figure 8a. The corresponding safety diagram for 

these two drugs is presented in Figure 8b. The pKi of serotonin for 5HT2B is 8.40 [28], which establishes the baseline 

against which drug affinities for 5HT2B would need to be evaluated. The affinity of bromocriptine for its primary 

target (DRD2), pKi(pT) = 9.70 [28], is over 100-fold higher than that for 5HT2B, pKi(oT) = 7.30 [28], yet its off-target 

affinity is approximately tenfold lower relative to the corresponding affinity for the endogenous ligand, placing this 

drug within the safety-risk grey zone. Bromocriptine exemplifies the hypothetical drug 1 case: despite an ample pKi-

based off-target safety margin, pKi(pT) – pKi(oT) = 2.40, the difference between the affinities of the endogenous ligand 

and the drug, pKi(serotonin) – pKi(bromocriptine) = 1.10, foreshadow its potential risk for VHD. By contrast, the 

affinity of troglitazone for its primary target (peroxisome proliferator activated receptor ; PPARG), pKi(pT) = 

(5.42,6.52) [28], does not differ much from that for 5HT2B, pKi(oT) = 6.08 [28], yet the latter value is over 100-fold 

lower than the corresponding affinity of serotonin, placing it well below the safety-risk grey zone. Troglitazone 

embodies the hypothetical drug 2 case: despite poor selectivity compared with the off-target, pKi(pT) – pKi(oT) = (–

0.66+0.44), the difference between the affinities of the endogenous ligand and the drug, pKi(serotonin) – 

pKi(troglitazone) = 2.32, is a better predictor for its low risk in causing VHD. 

Overall, these results would favour a Ki-based safety margin (SM) defined as the difference in off-target binding 

affinities between the endogenous metabolite (M), pKi
M(oT), and the drug (D), pKi

D(oT) (Equation 1): 

 SM =  pKi
M(oT) − pKi

D(oT) [1], 

in contrast to the traditional definition based on the difference in binding affinities of the drug between the target 

and the off-target (Equation 2): 

SM =  pKi
D(pT) −  pKi

D(oT) [2]. 

Values of SM >2 would be recommended. 

Some practical limitations 

However, there are some aspects of the present study that merit further consideration. As already highlighted, there 

are limitations associated with data completeness and bias, always present in this type of analysis [27]. Among the 

set of 293 drugs collected in our set, there are representatives of 11 out of the 14 topmost levels of the Anatomical 

Therapeutic Chemical classification system of drugs [50] but almost 25% of the 442 interactions implicate drugs of 

the nervous system (N level). In addition, even though there are 43 endogenous ligands assigned to those 442 

interactions, a single one (serotonin) is involved in almost 15% of them. This reflects the fact that 70 of the 79 

receptors for which affinities with the same units were found in public sources for both endogenous ligands and drugs 

are GPCRs. A similar situation is encountered in the enzyme data set, in which a single molecule among the 32 

endogenous substrates, arachidonate, is involved in 27% of the 222 interactions. This data bias stresses our current 

limited knowledge on the pharmacology of the human endogenous metabolome. In this respect, to compile a reference 

repository of metabolite affinity baselines, it is important to coordinate worldwide to identify the main endogenous 

ligands of human proteins, measure their in vitro binding affinities, and characterise their complete pharmacological 

profile across multiple protein family members, making all data publicly available to the research community. 

In addition, an underlying assumption of the entire analysis is that, for a fair comparison of affinity values, drugs 

and endogenous ligands interact with the same protein at the same binding site. For receptors, based on the well-
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established similarity between drugs and metabolites [51-–54], one could take this assumption for granted, because 

similar small molecules are expected to bind to similar protein sites, but the ultimate proof would come from 

structural data. For enzymes, this aspect should be less crucial because most drugs and substrates are expected to 

bind at the same catalytic site. In all cases, orthosteric binding was assumed and the possibility of allosteric effects 

was not considered. 

Unfortunately, if consistent affinity data of both metabolites and/or substrates and drugs for the same protein 

were scarce, structural data of the complex between the protein with metabolites and/or substrates and drugs are 

rarer still. This notwithstanding, we searched the Protein Data Bank (PDB) [55] for entries of proteins that were 

cocrystallised with both their endogenous metabolite and/or substrate and one of the drugs from our list. Two 

illustrative examples for GPCRs were found, namely, the 2-adrenergic receptor (ADRB2) and AA2AR. ADRB2 has 

been cocrystallised with its endogenous ligand, adrenaline (4ldo), and a drug antagonist, timolol (3d4s), whereas 

structures of AA2AR cocrystallised with its endogenous ligand, adenosine (2ydo), and two drug antagonists, 

theophylline (5mzj) and caffeine (3rfm), were also identified. The backbone superposition of the binding cavity of 

AA2AR with the metabolite and two drugs is show in Figure 9a. For the enzyme data set, protein structures 

cocrystallised with both the endogenous substrate and a drug were found for ten out of the 222 drug–enzyme–

substrate triads collected. In total, 43 PDB entries were identified, 38 of which involving carbonic anhydrase, three 

for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and one for aldose reductase. The backbone 

superposition of the catalytic site of HMG-CoA reductase bound to its endogenous substrate, HMG-CoA (1dqn), and 

two drug inhibitors, atorvastatin (1hwk) and fluvastatin (1hwi) is illustrated in Figure 9b. For both proteins, the 

alignment confirms that the endogenous metabolite and/or substrate and the drugs bind to the same site. Accordingly, 

along the same lines expressed earlier for pharmacological data, more efforts to resolve crystal structures of protein–

metabolite and/or substrate–drug complexes for which in vitro affinity data are available would be an informative 

addition to a reference human endogenous ligand repository. 

Finally, we emphasise that there are multiple and complex components involved in both the biological action of 

endogenous ligands and the therapeutic effect of a drug. In particular, metabolite abundance (concentration of the 

endogenous ligand at the site of action) and drug exposure (concentration of the drug over time at the target tissue) 

are two major factors [49], the effect of which was not considered in our analyses. Metabolite abundance varies over 

time, cell type, tissue, and environmental conditions and depends largely on the individual endogenous ligand [56]. 

Likewise, drug exposure depends on multiple pharmacokinetic factors (e.g., half-life, distribution, and clearance) that 

are affected by interindividual variations (e.g., body mass, metabolism, drug–drug interactions, comorbidities, and 

other environmental factors). Receptor occupancy, the on/off rate captured by kinetic constants, as well as 

considerations of high- and low-affinity states for receptors and coexisting catalytic efficiency states for enzymes were 

also not taken into account. It was not the aim of this work to model the complexity of the process but to highlight 

simple trends that were identified using in vitro binding affinities of drugs relative to those of endogenous ligands as 

a contributing factor in the in vitro to in vivo translatability of drugs. 

Concluding remarks 

Understanding why a specific drug needs a certain level of affinity for its primary protein target(s) to exert its 

therapeutic action is essential for drug discovery. Based on a curated collection of 442 interactions between 293 drugs, 

79 receptors, and 43 endogenous ligands, this study demonstrates that the affinity of an endogenous ligand for its 

native receptor can be used as a reference baseline for the primary pharmacology of drugs. Our findings reveal that 

67% of all drug–receptor interactions have affinity values above the corresponding metabolite–receptor affinities and 

that up to 96% of those drug affinities have values within two orders of magnitude of metabolite affinities for the 

same protein. An analysis of the remaining 4% of drug–receptor interactions indicates that primary targets assigned 

to drugs with affinities below two orders of magnitude of metabolite affinities should be critically revised. 

The relationship between the affinity of both the drug and the endogenous ligand for the same protein target was 

further validated on an external set of 202 interactions between 148 drugs, 57 receptors, and 35 endogenous ligands, 

which included 110 drugs, nine receptors, and nine metabolites that were not originally considered. The results 

confirmed the trends observed previously, with 60% of drug affinities being higher than the affinities of the 

endogenous ligand for the same target, and 93% of them fitting within a range of two orders of magnitude of the 

corresponding metabolite affinities. 

Furthermore, a second external set of 222 interactions involving 164 drugs, 41 enzymes, and 32 endogenous 

substrates revealed that there is a two order of magnitude shift for drug–enzyme affinities relative to endogenous 

substrates compared with drug–receptor affinities relative to endogenous ligands, with 60% of enzyme drug 

inhibitors having affinity values over two orders of magnitudes higher than the corresponding substrate affinities. 

Thus, our findings that the human endogenous metabolome could serve as a pharmacology baseline for drug in 

vitro affinities on proteins was strengthened by the observations that endogenous ligand affinities for their native 

proteins are, on the one hand, directly proportional to the minimum drug affinity among all drugs optimised for a 

given primary target and, on the other hand, inversely proportional to the range of drug affinities for each primary 

target.  

Besides the implications for the primary pharmacology of the drug, our results also highlight the impact that in 

vitro endogenous ligand affinities can have on assessing the risk of safety events linked to the secondary 

pharmacology of the drug. As an illustrative example, the case of VHD related to long-term agonist action on the 
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5HT2B receptor was presented. Our results confirm that a difference of two orders of magnitude below the in vitro 

affinity of serotonin for 5HT2B successfully separates valvulopathic drugs from drugs devoid of risk to produce VHD, 

in agreement with the recommendation formulated recently by a regulatory agency [37]. 

The link between the in vitro binding of small molecules to certain disease-relevant proteins and its ultimate 

translation into an in vivo phenotypic outcome is one of the main pillars of drug discovery [57]. However, this in vitro 

to in vivo extrapolation remains challenging, because differences in the activity of compounds in biochemical assays 

and in cellular, tissue, or organism assays are common and difficult to understand in the context of a biological 

system, where multiple factors intervene [58]. Our findings suggest that the endogenous metabolome is one of those 

factors. The fact that simple trends between metabolite affinities and the primary and secondary pharmacologies of 

a drug could be derived indicates that more research should be devoted to further understand the true reach of the 

impact of the human endogenous metabolome on the efficacy and safety of drugs. Up to 79% of drug clinical failures 

remain to be attributable to safety or efficacy reasons [59]. In this respect, the recommendations outlined here based 

on preclinical in vitro pharmacology data could provide additional metrics to assess the risk of clinical failure and 

contribute to reduce drug attrition. 
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Figure 1. Density plot of the 442 drug–target–metabolite triads. Drug affinities for their primary target(s) are plotted against the corresponding endogenous 

metabolite affinities. A kernel density estimation is shaded in blue tones, darkest blue corresponding to highest density regions. Solid and dashed lines correspond 

to drug affinities being equal to and two orders of magnitude lower than the corresponding metabolite affinities for the same protein, respectively. Also included 

are the distributions of drug affinities (left) and metabolite affinities (top) with median negative logarithm values of 8.52 and 7.20, respectively. The position and 

name of the four outlier drugs discussed in the main text are also indicated. 

Figure 2. Density plots of the 160/260 drug agonist and/or antagonist–target–metabolite triads. Affinities values of drug agonists (a) and antagonists (b) for 

their primary target(s) are plotted against the corresponding endogenous metabolite affinities. A kernel density estimation is shaded in blue tones, darkest blue 

corresponding to highest density regions. Values on the top-right side of each graph reflect the percentage of drug–target interactions having affinity values 

equal to (solid line), one order, and two orders (dashed line) of magnitude more potent than the corresponding metabolite affinities for the same protein. 

Figure 3. Target-centred analysis of the 442 drug–receptor–metabolite triads. Each one of the 79 drug targets, 70 G-protein-coupled receptors, and nine nuclear 

hormone receptors is represented by a column in this circular plot. The height of the column reflects the affinity between a drug target and its main endogenous 

ligand. The tip of each column, in lighter colour, marks the two order of magnitude window below the affinity of the endogenous metabolite. Drug affinities for 

their primary target(s) are displayed as circles, filled or open depending on its functional action. The solid-black line crossing all columns serves as the 10-μM 

reference affinity level for all drug and endogenous metabolite affinities. 

Figure 4. Metabolite affinity as reference baseline for the primary pharmacology of drugs. Each circle represents one of the 26 targets for which pKi data are 

available for more than three drugs. The size of the circle is proportional to the number of drugs associated with each target. Trends show that endogenous 

metabolite affinity is (i) directly proportional to the minimum affinity of all drugs having the protein as primary target; and (ii) inversely proportional to the range 

of drug affinities. Marked outliers (grey circles) are the muscarinic acetylcholine receptor M1 (ACM1), the κ opioid receptor (OPRK), the  opioid receptor (OPRM) 

and the 1B adrenergic receptor (ADRA1B). For OPRK, OPRM, and ADRA1B, their positions after discarding oxymorphone, tramadol, and methoxamine, 

respectively, are also included and indicated with an arrow from the original point. Dotted lines in both cases reflect the existing direct and inverse linear 

correlations. 

Figure 5. Endogenous metabolite affinity as reference baseline for the primary pharmacology of drugs. Each circle represents one of the 37 targets for which pKi 

data are available for more than three drugs. The size of the circle is proportional to the number of drugs associated with each target. Newly incorporated targets 

with respect to Figure 4 (main text) appear as circles with thick-black borders. The same trends observed in Figure 4 (main text) hold true: the endogenous ligand 

affinity for a protein is: (i) directly proportional to the minimum affinity of the drug for that protein; and (ii) inversely proportional to the range of drug affinities 

for that protein. Targets with outlier drugs discussed in the main text and removed from the correlations are shown in grey and their corrected position indicated 

by an arrow. 

Figure 6. Target-centred analysis of the 222 drug–enzyme–substrate triads. Each of the 41 enzymes is represented by a column in this circular plot. In contrast 

to the receptor families, the height of the column reflects the two order of magnitude window, in lighter colour, above the affinity of the endogenous substrate 

for its native enzyme. The darker height of each column marks the actual affinity of the endogenous substrate. Drug affinities for their primary target(s) are 

displayed as black circles. The solid-black line crossing all columns serves as the 10-μM reference affinity level for all drug and substrate affinities. 
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Figure 7. Distribution of binding affinities (pKi) for 24 serotonin receptor subtype 2B (5HT2B) agonists. The set includes 12 valvulopathic drugs (in red) and 12 

nonvalvulopathic drugs (in green). Drug affinities are aligned at the maximum binding affinity of serotonin for 5HT2B found in Guide to Pharmacology database 

(GtoPdb) (8.4). For the sake of comparison, the corresponding serotonin affinities reported in ChEMBL [28] and PDSP [48] (vertical dashed lines) are 7.9 and 

9.1. The diagonal grey area marks the region where drug affinities lie between the serotonin affinity (solid line) and the 100-fold window (dashed line). 

Figure 8. A new perspective on safety margins considering endogenous ligand affinities. (a) Schematic plotting endogenous metabolite affinities versus drug 

affinities for a set of four exemplary proteins: two primary targets (pT1 and pT2, represented by circles) and two off-targets (oT1 and oT2, represented by squares). 

Despite its 100-fold selectivity, drug 1 might be at risk of showing the safety issue linked to off-target oT1 (orange square), whereas drug 2 might be safe, even 

though its affinity for off-target oT2 (green square) is tenfold higher than the affinity for its primary target pT2. The diagonal grey area marks the region where 

drug affinities lie within two orders of magnitude (dashed line) below the endogenous ligand affinity (solid line); (b) the same diagram plotting the cases of 

bromocriptine and troglitazone. Binding affinities (pKi) for their respective primary targets dopamine [D2 receptor (DRD2) and peroxisome proliferator activated 

receptor  (PPARG)] and the 5HT2B off-target are plotted against the corresponding affinities for the endogenous ligands, namely, dopamine for DRD2, linoleic 

acid for PPARG, and serotonin for serotonin receptor subtype 2B (5HT2B). See main text for discussion. 

Figure 9. Pairs of metabolite and/or substrate and drugs binding at the same protein site. Backbone superpositions of (a) the adenosine 2A receptor cocrystallised 

with its endogenous ligand, adenosine [Protein Data Bank (PDB) 2ydo, in white), and two drug antagonists, theophylline (PDB 5mzj, in yellow) and caffeine (PDB 

3rfm, in orange), and (b) the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase enzyme cocrystallised with its endogenous substrate, HMG-CoA 

(PDB 1dqn, in white), and two drug inhibitors, atorvastatin (PDB 1hwk, in yellow) and fluvastatin (PDB 1hwi, in orange). 

Box 1. Data and methods 

In vitro pharmacology of drugs and primary targets 

We explored public pharmacology databases in the search for interactions of drugs with their primary targets where quantitative affinity 

data were available for both the interactions between the drug and the target and between the target and its main endogenous metabolite. 

Accordingly, drug–target interactions labelled as being involved in the mechanism of action of the drug with defined activity values were 

retrieved from DrugCentral [7]. Of the 4486 drugs available in DrugCentral (downloaded on May 2017), 1862 had defined affinity values 

against a given target, 936 of them having at least one interaction against a human target labelled as being involved in the mechanism of 

action of the drug (i.e., its primary targets). A total of 1769 interactions were retrieved between those 936 drugs and 403 targets. In a 

second stage, two additional sources of affinity data were searched for quantitative affinities of drug–target interactions, namely Guide to 

Pharmacology database (GtoPdb) [14] and ChEMBL [28]. GtoPdb contributed with 76 additional interactions between 61 drugs and 40 

proteins, whereas ChEMBL added 71 interactions between 47 drugs and 28 proteins. 

In vitro pharmacology of endogenous ligands and primary targets 

To include data on endogenous ligands, we searched GtoPdb [14] first for those 403 drug targets identified in the previous step, retrieving 

all their interactions with ligands labelled as being the principal human endogenous ligand. In total, 179 interactions between 86 metabolites 

and 95 proteins were extracted. GtoPdb collects the highest and lowest affinity values reported for each metabolite–protein interaction, 

which reflects the inherent variability of independent affinity measures, and provides the detail of the units used to measure binding. On 

average, pKi affinity ranges extracted from GtoPdb spanned 1.0 log units, with a standard deviation of 0.59 log units. However, there were 

some extreme cases, such as the affinity of dopamine for the dopamine D2 receptor, for which pKi values vary largely (4.7–7.2). To partially 

alleviate the effects of data variability, the analysis was done using always the highest pKi affinity value reported in GtoPdb for each 

endogenous ligand. By taking the least favourable scenario when a range of affinities was provided, we aimed to increase the robustness 

of our analysis. Then, for each protein, the main endogenous metabolite with highest affinity was selected as the native metabolite. In a 

second stage, the ChEMBL database [28] was also searched for additional metabolite affinities on any of those 403 drug targets. An 

additional set of 121 interactions between 22 metabolites and 34 proteins were extracted. 

In vitro pharmacology mapping of drugs and endogenous ligands 

To allow for affinity comparisons, drug–receptor–metabolite associations were made only when both drug and metabolite had a described 

affinity for the target with the same affinity unit (Ki, Kd, IC50, or EC50), using the highest metabolite affinity available. We identified a total 

of 442 drug–receptor–metabolite triads involving 293 drugs, 79 proteins, and 43 metabolites (Table S1 in the supplemental information 

online). Among them, 404 (90.4%) were pKi values. In a second stage, we collected an additional set of 202 drug–receptor–metabolite 

triads involving 148 drugs, 57 targets, and 35 metabolites (Table S3 in the supplemental information online). Of them, 116 (57.4%) were 

pKi values. 

In vitro binding affinities of 5HT2B agonists and risk of VHD 

A total of 153 drugs with affinity data for 5HT2B were identified in DrugCentral [7]. The PDSP Ki database [48] was then searched to 

complement with Ki data those interactions for which activities in other units (Kd, IC50 or EC50) were available in DrugCentral. Of these, two 

drugs were annotated as 5HT2B agonists in DrugCentral [7]. An additional eight drugs were found annotated as 5HT2B agonists in ChEMBL 

[28]. A manual literature search of the remaining drugs confirm 11 other drugs as 5HT2B agonists and provided evidence supporting or 

rejecting their associated risk of causing VHD. A final set of 21 drugs with pKi affinity values, confirmed agonist action to the 5HT2B 

receptor, and evidence of VHD risk was collected [37–45]. Among them, 12 were recognised valvulopathic drugs. An additional set of 

three 5HT2B agonist drugs for which pKi values were available but no information on VHD could be found was also included. The final list 

of 24 5HT2B agonist drugs considered in this study is provided in Table S5 in the supplemental information online. 
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