Zenodo.org will be unavailable for 2 hours on September 29th from 06:00-08:00 UTC. See announcement.

Presentation Open Access

Using deep learning paradigm to improve syllabic versification: A first approach

De la Rosa, Javier; Ros Muñoz


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">akh</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">scansion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">versification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">natural language processing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">embeddings</subfield>
  </datafield>
  <controlfield tag="005">20200120173235.0</controlfield>
  <controlfield tag="001">3356266</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">24-26 JUNE 2019</subfield>
    <subfield code="g">QAV2019</subfield>
    <subfield code="a">QUANTITATIVE APPROACHES TO VERSIFICATION</subfield>
    <subfield code="c">Prague</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">UNED</subfield>
    <subfield code="0">(orcid)0000-0001-6330-4958</subfield>
    <subfield code="a">Ros Muñoz</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">9232082</subfield>
    <subfield code="z">md5:86751772884c70ecad53a117516e3da1</subfield>
    <subfield code="u">https://zenodo.org/record/3356266/files/BERTSIFICATION. Uncovering metrical form hidden in word embeddings.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://versologie.cz/conference2019/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3356266</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">UNED</subfield>
    <subfield code="0">(orcid)0000-0002-9143-5573</subfield>
    <subfield code="a">De la Rosa, Javier</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Using deep learning paradigm to improve syllabic versification: A first approach</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">679528</subfield>
    <subfield code="a">Poetry Standardization and Linked Open Data</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Presented an off-track paper on using modern neural approaches for unsupervised scansion of multi-lingual texts&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3356265</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3356266</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
85
70
views
downloads
All versions This version
Views 8585
Downloads 7070
Data volume 646.2 MB646.2 MB
Unique views 8383
Unique downloads 6464

Share

Cite as