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Abstract

This paper presents a robust defence strategy in reaction to destabiliz-
ing cyber-physical attacks launched against linear time invariant systems
and its application to power systems. The proposed protection scheme
aims at making the dynamics of a selected subsystem decoupled from the
dynamics of the subsystem targeted by the attack. The standard de-
coupling methods are made robust, in spite of poor information about
plant parameters and lack of state measurement, with the aid of an ex-
tended observer. In this way it is possible to keep the protected dynamics
arbitrarily close to the one of a suitably chosen stable system, so long
as the dynamics being targeted by the attack remain within prescribed
bounds. The proposed defence strategy is presented in the context of
modern power systems, wherein generators and transmission network are
operated by different players, and shown to be effective using the Western
System Coordinating Council 9-bus test power network.

1 Introduction

Over the last two decades the cyber physical systems have increasingly at-
tracted the attention of academics and industry, posing new opportunities and
challenges. Indeed, nowadays the integration of information and communication
technology into physical processes is commonly recognized as fundamental to
improve the operation of industrial plants and large scale infrastructures ded-
icated to the production of goods and the provisioning of primary importance
services. Despite of this, the new paradigm increases the vulnerability of this
class of systems, which are exposed to attacks leveraging the potential access
to operational data in order to alter the behaviour of the underlying physical
process. Well-known examples are the Maroochy Water breach [22] in 2000, the
SQL Slammer worm attack on the Ohio nuclear plant network [11] in 2002, the
coordinated attack on the Ukrainian power grid [23] in 2016.
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The cyber-physical system security topic is receiving a lot of attention within
the control theory community, as witnessed by the growing number of papers
and special issues in relevant journals, e.g., [20][4] and references therein. Several
classes of attack design and detection have been identified and studied, among
the others: deception and denial of service attacks [2][6], replay attacks [16][28],
false data injection attacks [13][14], random and constant bias attacks [12], and
zero dynamics attacks [24][25][19].

In particular, it has been observed that systems having unstable zero dy-
namics are vulnerable to stealthy attacks. In fact, as shown e.g. in [17], in a
system whose zero dynamics are unstable, with an (output feedback) control
chosen so as to guarantee asymptotic stability in the absence of attacks, an at-
tack generator may inject signals that make the internal state diverge, while the
effects of such attack are not visible from the mere observation of the output
(on the measure of which the stabilizing control is designed). An attack of this
kind is commonly referred to as a zero-dynamics attack. Recent researches have
focused on the design of a zero dynamics attack as well as on the detection of
(or defence from) such an attack. In particular, [17] shows how a zero dynam-
ics attack can be implemented that is robust in spite of model uncertainties,
by means of a technique reposing on the design of a robust disturbance ob-
server [21]. Researches on the detection of zero dynamics attacks are based on
the design of centralized and decentralized observers [19], Kalman filtering [9],
adaptive sliding mode observers [3], or by suitably altering the input behaviour
of the process [7].

In this paper we focus on the design of defence strategies and we consider a
slightly different scenario. Specifically we address the case in which the purpose
of the attacker is to influence a portion of the dynamics of the plant (for instance
in such a way that the zero dynamics associated with a selected output become
unstable, so as to make a zero-dynamics attack possible) in a malicious way.
The defence strategy is based on the (indeed elementary) idea of making the
portion of the dynamics affected by the attack decoupled from the portion of
the dynamics that needs to be defended. In this context, though, the standard
decoupling methods are of no use because relying upon exact cancelation of
coupling terms and availability of a measure of the entire state of the plant.
Instead, we propose a design technique by means of which the result in question
is achieved, robustly, in “practical terms”, over a finite time horizon. The
method in question basically reposes on some fundamental results of [5], in
which a high-gain extended observer is employed, to the purpose of obtaining a
robust “proxy” of a control law based on exact cancelation.

Among the application fields of interest, power systems are typical cyber
physical systems, characterized by lack of information, asking for enhanced de-
fence schemes. It is well known that power system dynamics results from the
interconnection of synchronous machines, whose electromechanical behaviour is
controlled by local prime mover governors. A fundamental role of the governor
is the one of keeping the machine angular speed constant, against the oscilla-
tions of the electrical torque, by acting on the mechanical torque applied to
the rotor. A malicious intervention on this control has the effect of inducing
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oscillations on the other machines in the network through the interconnections.
In this context, a zero dynamics attack can be seen as the action of altering
the mechanical torque of a properly selected set of machines, in order to in-
duce instability in some machines without having an impact on some others.
Conversely network decoupling can be achieved via feedback in order to allow
a power plants operator to protect its machines.

Both the destabilization and the exact decoupling require a significant amount
of information about the network model and full information about the rotor an-
gle and the angular speed of machines. Despite the availability of measurements
does not constitute a problem from the technological point of view in modern
power systems, all the above information together are typically not available in
practice. Indeed, following the unbundling of the electricity systems and the
establishment of electricity market in most industrialized countries, the trans-
mission network and the power plants have started to be operated by different
operators, which typically share a limited amount of data about their infrastruc-
tures. Then a requirement for applying both the nominal attack and defence
controls is the access to information owned by different players.

In the light of the above, this paper presents a robust defence strategy to
attacks launched against linear time invariant systems and its application to
power systems.

The paper is organized as follows. Section 2 recalls the model of a power
system, describes the attack scenario and clarifies the requirements for a suc-
cessful defence. Section 3 presents the attack model. Section 4 presents the
robust decoupling control at the basis of the defence. In section 5 the proposed
strategy is applied to a test power network in order to show the potential of
the proposed defence strategy. Finally section 6 is dedicated to the concluding
remarks.

2 Reference scenario

2.1 Power system model

In this section the power system model is recalled. The generic network
here considered is constituted by m̄ power plants and q load buses. It is well
known that the electromechanical dynamics of a power system results from the
composition of second order swing equations, through the nonlinear algebraic
power flow equations [10][15]. As reported in [18], under the assumptions of
lossless network, small angular differences and small deviations of bus voltages
from rated values, the power system dynamics is described by the following time
invariant linear descriptor modelI 0 0

0 M 0
0 0 0

 δ̇ω̇
θ̇

 = −

 0 −I 0
Lgg D Lg`

L`g 0 L``

δω
θ

+

 0
Pg

P`

 (1)
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In (1) δ = col(δ1, δ2, . . . , δm̄) and ω = col(ω1, ω2, . . . , ωm̄) denote the vectors
of machines rotor angles and angular speeds, θ = col(θ1, θ2, . . . , θq) denotes
the vector of load angles at load buses, Pg = col(Pg1, Pg2, . . . , Pgm̄) and P` =
col(P`1, P`2, . . . , P`q) are the vectors of mechanical input powers at generator
buses and electrical powers at load buses, the matrices M = diag(M1, . . . ,Mm̄)
and D = diag(D1, . . . , , Dm̄) model the machines inertia and damping coef-
ficients; finally Lgg, Lg`, L`g and L`` are properly sized submatrices of the
network laplacian matrix

LN =

(
Lgg Lg`

L`g L``

)
(2)

where Lgg is diagonal and L`` is invertible. The model can be further simplified
by explicity calculating θ from the third component of (1) as

θ = −L−1
`` [L`gδ + P`] (3)

and substituting it into the angular speed dynamics to obtain(
δ̇
ω̇

)
=

(
0 I

M−1(−Lgg + Lg`L
−1
`` L`g) −M−1D

)(
δ
ω

)
+

+

(
0

M−1

)
Pg +

(
0

M−1Lg`L
−1
``

)
P`

(4)

Without loss of generality, it is possible to put P` = 0, meaning that in what
follows Pg will be intended as the deviation of the mechanical power from the
value allowing to sustain a given loading condition during normal operation.

The resulting model has the standard linear time invariant form

ẋ = Ax+ B̄ū (5)

where x = col(δ, ω) ∈ R2m̄ , ū = Pg ∈ Rm̄.

2.2 Attack scenario and defence requirements

In this section the attack scenario under investigation is described, raising
the requirements for the defence design. In the reference scenario the m̄ power
plants are divided into three groups:

• a set of ma power plants under the control of an attacker, able to alter the
mechanical power input in order to induce instability in the rotor angle
and angular speed dynamics of the other power plants in the network;

• a set of mp power plants to be protected by a defender against the oscil-
lations induced by the machines controlled by the attacker;

• a set of mu unprotected power plants, which are exposed to the effect ot
the attack.
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As a result of this classification, the input to model (5) is partitioned as ū =
col(ua, up, uu) where ua ∈ Rma is the input available to the attacker, up ∈ Rmp

is the input of the protected machines and uu ∈ Rmu is the input of unprotected
machines, the latter assumed not active in what follows.

This scenario is sufficiently general to cover some situations of practical
interest; in this paper we take the perspective of a generation company operat-
ing mp power plants and interested in protecting them from the spread of the
instability occurring in other machines through network interconnections; the
alteration of dynamics is supposed to be induced by the action of an hacker
which, taking advantage of the vulnerabilty of the ICT infrastructure of a sep-
arate set of ma power plants, uses their actuators to inject destabilizing signals
out of the respective generation company’s will.

The defender is supposed to have control on a limited number mp of ma-
chines. Also, as a consequence of the power system industry unbundling, the
defender is supposed to not have access to the state of the power plants which
are not under its control (being operated by other generation companies) and
to not know the laplacian matrix characterizing the connections in the network
(which is an information owned by the transmission system operator); addition-
ally it is assumed to have uncertain knowledge about the inertia and damping
of its own machines. Notice that, in an attack scenario, even though the state
of the attacked machines could be made available to the defender, such mea-
surements should be considered unreliable, as coming from power plants under
the influence of the attack.

In the light of the above, the fundamental requirements of the control strat-
egy aimed at protecting the dynamics of interest are the following:

• the purpose of the defence control up is to decouple the dynamics (rotor
and angular speed) of protected machines from the dynamics of the other
machines operating in the network;

• the decoupling has to be robust, meaning that it has to be achieved without
relying on the knowledge of machines state and network parameters.

To this purpose, a protected output yp ∈ Rmp is defined as the vector of
protected machines’ rotor angles; in this regard notice that the protection of
rotor angles dynamics implies the one of angular speed dynamics, being the
latter variable defined as the time derivative of the former.

In order to use standard notation, in what follows the subscript p will be
omitted when referring to the decoupling control and the protected output,
which will be denoted simply as u ∈ Rm and y ∈ Rm.

3 An Attack Model

In what follows, we consider a system modeled by equations of the form

ẋ = Ax+Bpu+Baua

y = Cpx
(6)
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with state x ∈ Rn, control u ∈ Rm, output y ∈ Rm, in which the input ua plays
the role of an exogenous attacker. We focus our attention on the case in which
the purpose of the attacker is to perturb the dynamics of the system and we
describe how the input u can be designed so as to counter, in a sense that will
be specified, the effects of such attack on the behavior of the protected output
y.

To simplify matters, we consider hereafter the case in which

CpBp = CpABp = · · · = CpA
r−2Bp = 0

CpA
r−1Bp = diag(b1, b2, . . . , bm)

(7)

where bi 6= 0 for i = 1, . . . ,m, i.e. the case in which system (6), viewed by
the defender as a system with input u and output y, has vector relative degree
{r, r, . . . , r} and a purely diagonal “high-frequency gain matrix”. This, in fact,
is the case for the specific class of systems discussed in the previous section,
consisting of the interconnection of a set of identical sub-systems, all of them
independently actuated. However, we stress that without much complications
one could as well address the more general case in which system (6) has vector
relative degree {r1, r2, . . . , rm} or even does not have a vector relative degree
but has an invertible transfer function matrix T (s) = Cp(sI −A)−1Bp.

It is also assumed 
Cp

CpA
· · ·

CpA
r−1

Ba = 0 . (8)

which is yet another feature of the class of systems considered in the previous
section.

As it is well known, under these assumptions system (6) can be – by means
of a suitable change of coordinates – expressed in normal form as

ż0 = F0z0 +G0ξ +G0,aua

ξ̇i = Aiξi +Bi(Hi,0z0 +Kiξ + biui)

yi = Ciξi i = 1, . . . ,m

(9)

in which

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

 , Bi =


0
0
· · ·
0
1

 ,

Ci =
(
1 0 · · · 0

)
and ξ = col(ξ1, . . . , ξm), dim(z0) = n−mr, dim(ξi) = r.

Remark. In geometric terms, the previous setup can be characterized as fol-
lows (see [27, pp.87-90] and [27, pp.104-113] for definitions and basic properties
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related to the concepts of (A,B)-invariant subspace and of controllability sub-
space). Set B̄ =

(
Bp Ba

)
. If (7) holds, then V∗, the largest (A, B̄)-invariant

subspace contained in Ker(Cp), is given by

V∗ = Ker


Cp

CpA
· · ·

CpA
r−1

 .

In the coordinates of (9)

V∗ = {(z, ξ) : ξ = 0},

and (8) is equivalent to
Im(Ba) ⊂ V∗ .

MoreoverR∗, the largest controllability subspace of (A, B̄) contained in Ker(Cp),
can be identified with the reachable set of the pair (F0, G0,a). If such pair is
controllable, then R∗ = V∗. /

The attacker can perturb the dynamics of (6) in various ways, depending on
the information available. For instance, if the pair (F0, G0,a) is controllable and
z0 is available for measurement, the attacker ua can choose the strategy

ua = Kaz0 (10)

so as to assign eigenvalues with positive real parts to the matrix (F0 +G0,aKa).
The effect of such attack is that of forcing, on the resulting system with input
u and output y, an antistable zero dynamics.

This strategy presumes the availability of z0 as well as an accurate knowledge
of F0 and G0,a. If this is not the case, an equivalent result could be obtained
by means of a dynamic control law

ζ̇ = Ãaζ + B̃aya

ua = C̃aζ + D̃aya
(11)

driven by a set of auxiliary measurements ya = M0z0+Nξ, so long as the system

ż0 = F0z0 +G0,a(C̃aζ + D̃aM0z0)

ζ̇ = Ãaζ + B̃a(C̃aζ + D̃aM0z0)

can be rendered antistable.
Simple manipulations show that if the attack strategy is chosen as in (11),

a system of the form

ż = Fz +Gξ

ξ̇i = Aiξi +Bi(Hiz +Kiξ + biui)

yi = Ciξi i = 1, . . . ,m

(12)
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is obtained, where z = col(ζ, z0), and the matrix F is anti-stable.
While the specific target of the attack strategies (10) and (11) are the zero

dynamics associated with the protected output y, it should be stressed that –
because of the inherent coupling between the z’s and the ξ’s (which reflects,
in the present context, the coupling between the protected, unprotected and
attacked power plants of (4)) – any malicious signal ua deliberately injected by
the attacker might have a serious adverse effect on the behavior of the protected
output y.

A simple strategy meant to counter the effects of an attack is indeed that of
making the protected output y decoupled from ua. As it is well-known, this is
achieved if u is chosen as

u = −B−1Hz + v , (13)

in which, for convenience, we have set

B = diag(b1, b2, . . . , bm), H =

H1

· · ·
Hm

 .

The control (13) renders the behavior of ξ, and consequently that of the pro-
tected output y, decoupled from z and hence unaffected by the attack. In fact,
such control renders the state z unobservable through the output y. Moreover,
one could pick the residual control v in (13) in such a way as to force a prescribed
behavior of the ξi’s. Setting, for convenience,

K =


K1

K2

· · ·
Km

 K0 =


K01 0 · · · 0

0 K02 · · · 0
· · · · · ·
0 0 · · · K0m


one could pick, to this end,

v = B−1[−Kξ +K0ξ] (14)

so as to impose any prescribed (stable) dynamics on ξ. Note that the composi-
tion of (13) and (14) is a control of the form

u = B−1[−Hz −Kξ +K0ξ] . (15)

The defence control (13), though, is not appropriate for various reasons. The
main reason resides in its lack of robustness. In fact, the implementation of such
control needs an accurate knowledge of B and H, as well as the availability of a
measurement of z. Another reason is that, even if B and H were known and z
were available for feedback, if the target of the attacker are the zero dynamics
the state z will eventually diverge and so will the control u. Thus, the resulting
control is sustainable only if implemented over a finite interval of time.

In what follows, we show that – from a practical viewpoint – the effect of
decoupling y from z can be achieved by means of a robust control law that does
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not rely upon exact knowledge of B and H nor on availability of z, but rather
appeals to techniques borrowed from the theory of the so-called extended high-
gain observer, so long as the state z does not exceed a fixed (but that can be
otherwise chosen arbitrarily large in the design stage) bound. In other words,
we show that given any arbitrarily large number M̄ and any arbitrarily small
number ε̄, it is possible to design a robust control law such that, so long as the
norm of z(t) does not exceed the bound M̄ , the behavior of ξ(t) differs from
the “ideal” behavior resulting from the implementation of the (“ideal” but not
robust) control law (15) by a quantity that does not exceed ε̄.

4 Robust Defence Against Destabilizing Attacks

4.1 The proposed defence strategy

We assume in what follows that all the bi’s are bounded from below and
from above by fixed numbers, that is there exists numbers 0 < bmin < bmax such
that

bmin ≤ |bi| ≤ bmax for all i = 1, . . . ,m.

If this is the case, one can find a number b0 and a number δ0 < 1 such that∣∣∣bi − b0
b0

∣∣∣ ≤ δ0 < 1 for all i = 1, . . . ,m. (16)

This number b0 will be used in the design of the control.
With K0 defined as above, let ψ(ξ, σ) be the function defined as

ψ(ξ, σ) = B−1
0 [K0ξ − σ] ,

in which ξ ∈ Rmr, σ ∈ Rm and B0 = diag(b0, b0, . . . , b0).
Let gL : R → R be a smooth “saturation” function, that is a function

characterized by the following properties:

• gL(s) = s if |s| ≤ L,

• gL(s) is odd and monotonically increasing, with 0 < g ′L(s) ≤ 1,

• lims→∞ gL(s) = L(1 + c) with 0 < c� 1.

With this in mind, define a function GL : Rm → Rm as

GL(s) = col(gL(s1), . . . , gL(sm))

in which gL(·) is a fixed saturation function.
System (12) will be controlled by a control law of the form

u = GL(ψ(ξ̂, σ)) =

 gL(ψ1(ξ̂, σ))
· · ·

gL(ψm(ξ̂, σ))

 (17)
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in which
ξ̂ = col(ξ̂1, ξ̂2, . . . , ξ̂m)
σ = col(σ1, σ1, . . . , σm)

where, for i = 1, 2, . . . ,m, the vector

ξ̂i = col(ξ̂i,1, ξ̂i,2, . . . , ξ̂i,r)

and the scalar σi are states of a dynamical system described by equations of the
form

˙̂
ξi,1 = ξ̂i,2 + κci,r(yi − ξ̂i,1)

˙̂
ξi,2 = ξ̂i,3 + κ2ci,r−1(yi − ξ̂i,1)

· · ·
˙̂
ξi,r−1 = ξ̂i,r + κr−1ci,2(yi − ξ̂i,1)

˙̂
ξi,r = σi + b0gL(ψi(ξ̂, σ)) + κrci,1(yi − ξ̂i,1)

σ̇i = κr+1ci,0(yi − ξ̂i,1).

(18)

In these equations, the coefficient κ and ci,0, ci,1, · · · , ci,r are design parameters.

4.2 Main result

The controller proposed in this paper is defined by the couple of equations
(17)–(18). This controller is completely specified by the set of parameters
B0,K0, L, ci,0, ci,1, · · · , ci,r and κ. In the previous subsection, structure and
values of B0 and K0 have been specified. In what follows, we will show how
the remaining design parameters can be chosen so as to obtain the desired goal,
which – in a nutshell – is to (practically) decouple the “protected” output y
from the “attacked” set z of state variables, so long as z(t) remains bounded by
a fixed – but otherwise arbitrary – number M̄ .

More specifically, we will prove that, if the design parameters are appropri-
ately chosen, the response ξ(t) can be made arbitrarily close (so long as z(t)
remains bounded by M̄) to the response resulting from the implementation of
the “ideal” control (15). In this respect, observe that, under the effect of the
control law (15), one would obtain for ξ(t) a response

ξ(t) = col(ξid
1 (t), . . . , ξid

m(t))

in which ξid
i (t) is a solution of

ξ̇id
i = (Ai +BiK0,i)ξ

id
i .

The Proposition that follows (in which we use BR to denote the closed ball

of radius R and ξ̂ext = col(ξ̂, σ)) is main result of the paper .

Proposition 1 Consider system (12) with control (17)–(18). Let R and R∗ >>

R be fixed. Assume x(0) ∈ BR and ξ̂ext(0) ∈ BR. There is a choice of saturation
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level L and of the design parameters ci,0, · · · , ci,r such that, for any choice of
ε̄ > 0 there exists a number κ∗ such that, if κ ≥ κ∗, then for all t such that
x(t) ∈ BR∗ the components ξ1(t), . . . , ξm(t) of the response ξ(t) satisfy

‖ξi(t)− ξid
i (t)‖ ≤ ε̄ .

4.3 Proof of the main result: a change of coordinates

The arguments used in the proof of the main result are essentially the same as
those used to show that a feedback law of the form (17)–(18) is able to induce
– under the assumption that the zero-dynamics of the controlled system are
asymptotically stable – an input-output behavior that asymptotically recovers
the behavior obtained under the action of a control of the form (15) (see [5][26]).
The novelty here is that we no longer assume that the zero dynamics are globally
asymptotically stable and we show that those arguments can be used to prove
“practical” decoupling of ξ(t), and hence y(t), from z(t), so long as the latter
remains bounded.

In order to analyze the response of the closed-loop system defined by (12)–
(17)–(18), it is useful to make a change of the variables, introducing

ei,1 = κr(ξi,1 − ξ̂i,1)

ei,2 = κr−1(ξi,2 − ξ̂i,2)

. . .

ei,r = κ(ξi,r − ξ̂i,r)
ei,r+1 = Hiz +Kiξ + [bi − b0]gL(ψi(ξ, σ))− σi .

(19)

Setting

e = col(e1, . . . , em)

ei = col(ei,1, ei,2, . . . , ei,ri+1) , i = 1, . . . ,m

equations (19) define a map

T : Rm(r+1) → Rm(r+1)

ξ̂ext 7→ e = T (z, ξ, ξ̂ext)
(20)

As shown in [8, pp.300-301]), the following property holds.

Lemma 1 If assumption (16) is fulfilled, the map (20) is globally invertible.

As consequence, (19) define a legitimate (partial) change of coordinates and
we can express the closed-loop system in the coordinates x = col(z, ξ) and e.

Note that e is a function of (x, ξ̂ext) and, conversely, that ξ̂ext is as a function
of (x, e).

We make now some manipulations in the equations that describe the closed-
loop system, so as to put it in a form of two mutually “coupled” subsystems,

11



one with state x and the other with state e. Later, we will discuss the effects of
the couplings.

So long as the dynamics of x is concerned, adding and subtracting the func-
tion (15) to the control u defined in (17), one obtains

u = B−1(−Hz −Kξ +K0ξ) + ∆3(x, e)

in which (recall that (ξ̂, σ) can be regarded as a function (x, e))

∆3(x, e) = GL(ψ(ξ̂, σ))−B−1(−Hz −Kξ +K0ξ) .

As a consequence, the equations of system (12) controlled by (17) can be
regarded as equations of the form

ż = Fz +Gξ

ξ̇i = (Ai +BiK0,i)ξi +Bi∆3,i(x, e)
(21)

in which ∆3,i(x, e) is the i-th row of ∆3(x, e). These equations appear as a
perturbed version of the equations resulting from the implementation of the
“ideal” control (15). Recall also that K0,i is chosen in such a way as to make
(Ai +BiK0,i) a Hurwitz matrix.

So long as the dynamics of the ei’s are concerned, appropriate calculations
show that

ėi,1 = κ(ei,2 − ci,rei,1)
ėi,2 = κ(ei,3 − ci,r−1ei,1)

· · ·
ėi,r−1 = κ(ei,r − ci,2ei,1)

(22)

ėi,r = κ[ei,r+1 − ci,1ei,1] + ∆1,i(x, e) , (23)

in which
∆1,i(x, e) = κ[bi − b0][gL(ψi(ξ̂, σ))− gL(ψi(ξ, σ))] ,

and that

ėi,r+1 = −κci,0ei,1− κ∆0,i(x, e)


c1,0e1,1

c2,0e2,1

· · ·
cm,0em,1

+∆2,i(x, e) . (24)

in which
∆0,i(x, e) = [bi − b0]g′L(ψi(ξ, σ))b−1

0 ,

∆2,i(x, e) = Hiż +Kiξ̇ + [bi − b0]g ′L(ψi(ξ, σ))b−1
0 K0iξ̇i .

Altogether, (22), (23) and (24) characterize a system of the form

ėi = κAe,iei − κBe2,i∆0,i(x, e)

 Ce,1e1

· · ·
Ce,mem

+

+Be1,i∆1,i(x, e) +Be2,i∆2,i(x, e)

(25)
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in which Ae,i ∈ R(r+1)×(r+1), Be1,i ∈ R(r+1), Be2,i ∈ R(r+1), CT
e,i ∈ R(ri+1) are

matrices defined as

Ae,i =


−ci,r 1 0 · · · 0 0
−ci,r−1 0 1 · · · 0 0
· · · · · · · ·
−ci,1 0 0 · · · 0 1
−ci,0 0 0 · · · 0 0

 ,

Be1,i =


0
0
· · ·
1
0

 , Be2,i =


0
0
· · ·
0
1

 ,

Ce,i =
(
ci,0 0 0 · · · 0 0

)
.

Relevant, in the analysis that follows, is the possibility of showing that the
functions ∆0,i(x, e),∆1,i(x, e),∆2,i(x, e), have the following properties (see, in
this respect, [8, 304-305]).

Lemma 2 If (16) holds and κ ≥ 1, there exist numbers δ0 < 1 and δ1 such that

‖∆0,i(x, e)‖ ≤ δ0 < 1 for all (x, e) and all κ

‖∆1,i(x, e)‖ ≤ δ1‖e‖ for all (x, e) and all κ .
(26)

Moreover, for each R > 0 there is a number MR such that

‖x‖ ≤ R ⇒ ‖∆2,i(x, e)‖ ≤MR for all e and all κ. (27)

Finally, note that (x, e) = (0, 0) is an equilibrium point of the system defined
by (21)–(25).

4.4 Proof of the main result: analysis of the response

We assume in what follows that the initial conditions (x(0), ξ̂ext(0)) of the
controlled system are in a fixed bounded set, that is we assume that x(0) ∈ BR
and ξ̂ext(0) ∈ BR, for some R > 0. Pick any number R∗ >> R and let [0, Tmax]
be a time interval such that x(t) ∈ BR∗ for all t ∈ [0, Tmax]. We will prove that,
if the design parameters are appropriately chosen, on the entire time interval
[0, Tmax], the states ξi(t) remain arbitrarily close to the trajectories of the stable
systems ξ̇i = (Ai +BiK0,i)ξi.

First of all, the threshold L of the saturation function is fixed, as

L = max
x∈BR∗

‖B−1(−Hz −Kξ +K0ξ)‖+ 1 . (28)

Then, observe that, since GL(·) is bounded by L(c+1), the quantity ∆3(x, e)
remains bounded so long as x(t) ∈ BR∗ , by a bound that does not depend on

13



the design parameter κ (rather, this bound only depends on the choice of R∗).

As a consequence, with x(0) ∈ BR and ξ̂ext(0) ∈ BR, given any arbitrarily
small number 0 < δ << (R∗ −R) there is a time T0, independent of the design
parameter κ, such that, for all times t ∈ [0, T0], x(t) ∈ BR+δ. During the
time interval [0, T0] also the state e(t) remains bounded. This is seen from the
bottom equation of (25), using the bounds determined for ∆0,i(x, e), ∆1,i(x, e),
∆2,i(x, e) and the fact that x(t) ∈ BR∗ for all t ∈ [0, T0]. It is worth observing, in
this respect, that the value of κ does affect the bound on e(t). In fact, looking at
the definitions of the various components of e, it is seen that ‖e(0)‖ grows with

κ (despite of the fact that, by assumption, ‖x(0)‖ ≤ M̄ and ‖ξ̂ext(0)‖ ≤ M̄).
This is not a problem, though, as it will be shown in the sequel.

We study now the behavior of e(t) for times larger than T0. To this end, we
make use of the following results (see, in this respect, [8, pp.308-312]).

Lemma 3 Consider the set of systems

ėi = Ae,iei −Be2,i∆0,i(x, e)

 Ce,1e1

· · ·
Ce,mem

 i = 1, . . . ,m

where Ae,i, Be2,i, Ce,i and ∆0,i(x, e) are defined as in (25). There is a choice of
the coefficients ci,0, · · · , ci,r such with this system is asymptotically stable, with
a quadratic, x-independent, Lyapunov function.

Lemma 4 Let the ci,j’s be chosen so as to make stability property indicated in
Lemma 3 fulfilled. Suppose x(t) ∈ BR∗ for all t ∈ [0, Tmax) and suppose that
ξext(0) ∈ BR. Then, for every 0 < T0 ≤ Tmax and every ε > 0, there is a κ∗

such that, for all κ ≥ κ∗,

‖e(t)‖ ≤ 2ε for all t ∈ [T0, Tmax).

Lemma 5 Suppose ‖e(t)‖ ≤ 2ε for all t ∈ [T0, Tmax). If ε is small enough, then

‖ψ(ξ, σ)‖ ≤ L− 1

2
.

As a consequence, GL(ψ(ξ, σ)) = ψ(ξ, σ).

From Lemma 3 and 4, we learn that there is a choice of the design parameters
ci,0, · · · , ci,r such that, for any choice of ε, there is a number κ∗ such that, for any
κ ≥ κ∗, so long as x(t) remains in the set BR∗ on the time interval [T0, Tmax), on
the same time interval ‖e(t)‖ is bounded by 2ε. From Lemma 5 we see that, if ε is
chosen sufficiently small, on the same interval GL(ψ(ξ(t), σ(t))) = ψ(ξ(t), σ(t)).
We use this latter property to show that, on the same time interval,

GL(ψ(ξ̂(t), σ(t))) = ψ(ξ̂(t), σ(t)), (29)

i.e. that none of the components of the control (17) is “saturated”.
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To this end, observe that

ξ̂ = ξ −D(κ)e (30)

in which D(κ) = diag(D1(κ), · · · , Dm(κ)) where Di(κ) is the ri×(ri+1) matrix

Di(κ) =


κ−ri 0 . . . 0 0

0 κ−ri−1 . . . 0 0
· · · · · · ·
0 0 . . . κ−1 0


and note that, if (without loss of generality) κ ≥ 1, then ‖D(κ)‖ ≤ 1. Since,

ψ(ξ̂, σ) = ψ(ξ, σ)−B−1
0 K0D(κ)e ,

if κ > 1 we have

‖ψ(ξ̂, σ)‖ ≤ ‖ψ(ξ, σ)‖+ ‖B−1
0 ‖‖K0‖‖e‖.

Thus, if ‖e‖ ≤ 2ε and ε is small enough we conclude from the previous Lemma

that ‖ψ(ξ̂, σ)‖ < L, and this proves that (29) holds on the time interval [T0, Tmax).
We return now to equation (21) and observe that, for all t ∈ [T0, Tmax),

∆3(x, e)= GL(ψ(ξ̂, σ))−B−1(−Hz −Kξ +K0ξ)

= ψ(ξ̂, σ)−B−1(−Hz −Kξ +K0ξ)

= ψ(ξ, σ)−B−1
0 K0D(κ)e−B−1(−Hz−Kξ+K0ξ) .

In this expression, ψ(ξ, σ) can be replaced by

ψ(ξ, σ) = B−1(−Hz −Kξ +K0ξ + ς) (31)

in which ς = col(e1,r+1, e2,r+1, . . . , em,r+1). In fact, from the last of (19) it is
seen that

ς = Hz +Kξ + [B −B0]GL(ψ(ξ, σ))− σ .

Adding and subtracting K0ξ, using the fact that GL(ψ(ξ, σ)) = ψ(ξ, σ) =
B−1

0 [K0ξ − σ], we obtain

ς = Hz +Kξ −K0ξ +Bψ(ξ, σ)

from which (31) follows.
As a consequence, it is seen that

∆3(x, e) = −B−1
0 K0D(κ)e+B−1ς .

Recalling that ς is part of e and using again the property ‖D(κ)‖ ≤ 1, we see
that

‖∆3(x, e)‖ ≤ (‖B−1
0 ‖ ‖K0‖+ ‖B−1‖)‖e‖ . (32)
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It is seen from this estimate that on the time interval [T0, Tmax), on which
‖e(t)‖ ≤ 2ε, the dynamics of the ξi(t)’s can be made arbitrarily close (by low-
ering the value of ε) to those of the “ideally decoupled” systems

ξ̇id
i = (Ai +BiK0,i)ξ

id
i .

Specifically, observe that the difference δξi = ξi − ξid
i obeys

˙δξi = (Ai +BiK0,i)δξi +Bi∆3,i(x, e)

with initial condition δξi(0) = 0. As a consequence

δξi(t) =

∫ T0

0

e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ+

+

∫ t

T0

e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ

in which (Ai + BiK0,i) is a Hurwitz matrix. The first term of this expression
can be arbitrarily lowered by lowering the value of T0 (recall that ∆3,i(x, e) is
bounded). Note, in this respect, that T0 can be arbitrarily lowered by increasing
κ (see Lemma 4). The second term, on the other hand, using the bound (16)
can be bounded as∫ t

T0

e(Ai+BiK0,i)(t−τ)Bi∆3,i(x(τ), e(τ))dτ ≤ M̄ sup
τ∈[T0,t)

‖e(τ)‖

Thanks to Lemma 4, this term can be arbitrarily lowered by lowering ε. Thus,
in summary, we conclude that, given any choice of ε̄, if we pick a sufficiently
large value of κ, we have

‖δξi(t)‖ ≤ ε for all t ∈ [T0, Tmax).

and this proves Proposition 1.

4.5 Remarks

It is worth stressing that we have considered a scenario in which a fixed set
of generators is to be protected by attacks affecting a different set of generators.
The proposed control (17)–(18) does not rely on any information about the entry
points of the attack in the system (in the context of power systems represented
by the generators under the control of the hacker); it only uses data from the
generators that have to be protected.

By means of the control law (17)–(18) we are able to practically decouple ξ(t)
from z(t) on the finite time internal [0, Tmax), in which Tmax is determined by
the bound R∗ chosen for x(t), bound which in turn determines the values of the
design parameters L, ci,0, ci,1, · · · , ci,r and κ∗. In practice, as kindly pointed out
by an anonymous reviewer, this should not be seen as a limitation of the method.
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In fact, it is reasonable to conceive that in practice z(t) will remain bounded for
all t, in which case we may well take Tmax =∞. As a matter of fact, the attack
on z(t) takes place through actuators that have saturations. This means that,
although the goal of the attacker is to make the zero dynamics anti-stable, z(t)
will only diverge so long as the actuators are not saturated. In the end, if the
un-attacked zero dynamics is stable, a consequence of a saturated attack is a
bounded attacked z(t). Another reason why one can consider Tmax =∞ is that,
since the attacked generators have automatic protections, if z(t) gets excessively
large then such generators at some time will be automatically disconnected
from the network. In this case, our defence strategy is effective on the finite
time interval during which the attacked generators are connected and will be
no longer needed after the disconnection of such generators.

5 Simulation Results

5.1 Case study

In order to validate the proposed decoupling strategy, the WSCC 9-bus test
power network reported in Fig. 1 has been considered [18]; it represents an
approximation of the Western System Coordinating Council (WSCC) to an
equivalent system with 3 generation buses and 6 load buses [1]. For this power
system the inertia and damping matrices characterizing the power plants are
respectively M = diag(0.125, 0.034, 0.016) and D = diag(0.125, 0.068, 0.048),
while the interconnections within the network are characterized by the laplacian
matrix indicated in eq. (33).

In the considered test case the power plant 1 is unprotected, the power
plant 2 is the one used for launching the attack, while the power plant 3 is the
one to be protected using the proposed decoupling approach. With reference
to the nomenclature used in section 3 (see in particular eq. (9)), in this case
n = 6, m = 1, r = 2; the controls used by the attacker and by the defender are
ua = Pg2 and, respectively, u = Pg3 and the protected output is y = δ3 (recall

that ω3 = δ̇3). The simulations reported in the following have been performed

LN =



0.058 0 0 −0.058 0 0 0 0 0
0 0.063 0 0 −0.063 0 0 0 0
0 0 0.059 0 0 −0.059 0 0 0

−0.058 0 0 0.235 0 0 −0.085 −0.092 0
0 −0.063 0 0 0.296 0 −0.161 0 −0.072
0 0 −0.059 0 0 0.330 0 −0.170 −0.101
0 0 0 −0.085 −0.161 0 0.246 0 0
0 0 0 −0.092 0 −0.170 0 0.262 0
0 0 0 0 −0.072 −0.101 0 0 0.173


(33)
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using Simulink.
The attack control has been chosen so as to force an anti-stable zero dynamics

characterized by four identical positive real eigenvalues with time constant τ =
20 s. The attack is triggered by a small initial condition on the angular speed
of machine 2 (ω2(0) = 1.3× 10−2rad/s), and all the machines are affected by
the attack due to their mutual coupling.

During the time period considered for running the simulation, the attack
control remains approximately in the range of 0.1 p.u.. Also the largest differ-
ences among angles occur at the interconnection of generators to load buses,
and remain below 0.5 rad (see Fig. 2), value beyond which the linear model
approximating the behaviour of the power system becomes questionable. Then
the validation of the proposed approach is here performed considering a time
horizon of approximately 6 s.

5.2 Protected case

In order to test the effectiveness of the proposed approach, both the cases
of ideal and robust decoupling of the protected dynamics are analyzed and
compared. For the purpose of tuning both controllers, the matrix K0 = [−9 −6]
has been chosen, using which, under the assumption of exact decoupling, the
protected dynamics is characterized by two identical negative real eigenvalues
with time constant τ ≈ 0.33 s.

POWER PLANT 1

(UNPROTECTED)

POWER PLANT 2 

(UNDER ATTACK)
POWER PLANT 3

(PROTECTED)

( 1, 1)

( 2, 2)
( 3, 3)

1

62 3

54

Figure 1: The WSCC 9-bus power network.

As far as the robust controller is concerned, at first the matrix B0 (reduced
here to a single scalar coefficient b0) has been set to 0.8b = 0.8M−1

3 . Then,
according to Lemma 3, the choice c0 = 6, c1 = 11, c2 = 6 has been performed,
which guarantees asymptotic stability of the observer’s error dynamics resulting
from the robust control.

Fig. 3 and 4 report respectively the evolution of the error components and
its norm for three different values of the gain (κ ∈ {50, 100, 200}): the higher is
κ, the shorter are the transient and the residual magnitude of the error. As a
matter of fact it is seen that if the value ε = 0.01 is chosen, the value κ = 200
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guarantees that the error’s norm reduces to and remains below the threshold 2ε
(-34 dB) approximately after T0 = 32 ms.

Fig. 5 reports the unsaturated defence control ψ, the actual control Pg3

subject to saturation and the deviation ∆3 between the robust and ideal control
(for each of the different values of κ considered before). As observed in the
general analysis, the higher is κ, the higher is the ”peak” in ψ(t), which explains
why for larger values of κ a saturation in the actual control may occur (Fig. 5).

In the light of the above, the decoupling control becomes effective after ap-
proximately T0 seconds, and in particular on a time scale that is one order of
magnitude smaller than the time constant imposed by the choice of the ma-
trix K0.

Having completed the tuning phase, the effectiveness of the decoupling con-
trol is here analyzed on a larger time scale. Fig. 6 reports the rotor angles
for all the machines in the network, showing the comparison between the evo-
lutions obtained when the robust and ideal controls are applied to the plant.
Differently from the ideal case, in which the exact decoupling is achieved along
the whole considered time period, in the robust case the rotor angle δ3 of the
protected machine experiences a transient, due to the initial coupling with the
infected zero dynamics, after which δ3 becomes very small, meaning that the
decoupling is occurring in practice over the entire period in which machines 1
and 2 loses stability. Compared to the ideal case, notice that the deviation of
δ3 from zero remains in the order of 10−2 rad. Similar considerations hold for
the evolutions of machines’ angular speeds reported in Fig. 7; again notice how
ω1 and ω2 diverge, while the angular speed ω3 remains substantially unaffected
by the attack.

Finally Fig. 8 shows the attack and defence controls, again the ones resulting
from the evolution of the power system state when the ideal and robust decou-
pling controls are applied to the plant. It can be seen here that, evaluated on
the whole considered time period, the defence control has an opposite sign with
respect to the attack, due to the need of balancing the excess energy introduced
by the attack in the power system; also the defence effort is smaller with re-
spect to the attack, considered that the attack energy is distributed among all
the machines in the network. Again deviations among the controls in the ideal
and robust cases appear, due to the different evolutions characterizing the state
of the system.

6 Conclusions

In this paper a robust protection scheme in reaction to destabilizing at-
tacks operated against linear cyber-physical systems has been presented. The
proposed defence control is able to decouple the protected dynamics from the
infected one, the latter seen by the defender as the zero dynamics of the system
at study; the distinctive aspect of the proposed method lays in its robustness,
meaning that the control objective is achieved in practice despite the lack of
information about the plant model and state.
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The application to power systems has been shown to be effective in relation
to the protection of power plants electromechanical dynamics (rotor angles and
angular speeds) against attacks operated using the governing system of vulner-
able machines. In particular the robust control approaches the ideal control
(allowing exact decoupling) on a time scale smaller than the one characterizing
the attack.

Motivated by the need of extending the rotor angles and speeds operational
range in which the decoupling is required to be effective, a future direction for
this research stream considers the design of a robust decoupling control in the
context of the nonlinear-descriptor representation of power systems.
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Figure 2: Differences among angles at the interconnection of generators to load
buses, in absence of defence.
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line), 100 (red dashed line), 200 (black solid line).
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Figure 7: Angular speeds dynamics in case of robust control (black solid line)
and ideal control (red dashed line).
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