Conference paper Open Access

End-to-end defect detection in automated fiber placement based on artificially generated data

Sebastian Zambal; Christoph Heindl; Christian Eitzinger; Josef Scharinger


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20200120161710.0</controlfield>
  <controlfield tag="001">3354724</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">15-17 May 2019</subfield>
    <subfield code="g">QCAV</subfield>
    <subfield code="a">Fourteenth International Conference on Quality Control by Artificial Vision</subfield>
    <subfield code="c">Mulhouse (France)</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="a">Christoph Heindl</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="a">Christian Eitzinger</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">JKU Institute of Computational Perception</subfield>
    <subfield code="a">Josef Scharinger</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1000160</subfield>
    <subfield code="z">md5:0a17b31c38674dd765c951cc924223a5</subfield>
    <subfield code="u">https://zenodo.org/record/3354724/files/2019_Zambal_QCAV.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.qcav2019.uha.fr/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-16</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3354724</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">PROFACTOR GmbH</subfield>
    <subfield code="a">Sebastian Zambal</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">End-to-end defect detection in automated fiber placement based on artificially generated data</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">721362</subfield>
    <subfield code="a">Zero-defect manufacturing of composite parts in the aerospace industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Non-Commercial)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Sebastian Zambal, Christoph Heindl, Christian Eitzinger, Josef Scharinger, &amp;quot;End-to-end defect detection in automated fiber placement based on artificially generated data,&amp;quot; Proc. SPIE 11172, Fourteenth International Conference on Quality Control by Artificial Vision, 111721G (16 July 2019). http://dx.doi.org/10.1117/12.2521739&lt;/p&gt;

&lt;p&gt;Copyright 2019 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1117/12.2521739</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
68
47
views
downloads
Views 68
Downloads 47
Data volume 47.0 MB
Unique views 57
Unique downloads 43

Share

Cite as