Journal article Open Access

Active Posts in Deterministic Lateral Displacement Devices

Beech, Jason P.; Keim, Kevin; Ho, Bao Dang; Guiducci, Carlotta; Tegenfeldt, J. O.

Citation Style Language JSON Export

  "DOI": "10.1002/admt.201900339", 
  "container_title": "Advanced Materials Technologies", 
  "title": "Active Posts in Deterministic Lateral Displacement Devices", 
  "issued": {
    "date-parts": [
  "abstract": "<p>Using electrically connected metal\u2010coated posts in a deterministic lateral displacement (DLD) device and applying electric fields, electrokinetics is used to tune separations, significantly decrease the critical size for separation, and increase the dynamic range with switching times on the order of seconds. The strength of DLD stems from its binary behavior. To first approximation, particles move in one out of two trajectories based on their effective size. For particles that are close to the threshold size, a small external force is sufficient to nudge the particles from one trajectory to another. The devices consist of arrays of cylindrical metal\u2010coated SU\u20108 posts connected by an underlying metal layer. This allows the application of voltages at the post surfaces and the generation of electric field gradients between neighboring posts, causing polarizable particles to experience a dielectrophoretic (DEP) force. This force, which depends on the volume and polarizability of the particle, can be made sufficient to push particles from one trajectory into another. In this way, the critical size in a device, normally fixed by the geometry, can be tuned. What&#39;s more, adding DEP in this way allows for the simultaneous creation of multiple size fractions.</p>", 
  "author": [
      "family": "Beech, Jason P."
      "family": "Keim, Kevin"
      "family": "Ho, Bao Dang"
      "family": "Guiducci, Carlotta"
      "family": "Tegenfeldt, J. O."
  "note": "Funding not listed elsewhere:\nSwedish Research Council (grant no. 2016-05739)\nSwiss National Science Foundation (205321_179086)", 
  "type": "article-journal", 
  "id": "3352780"
Views 80
Downloads 96
Data volume 984.4 MB
Unique views 71
Unique downloads 88


Cite as