Journal article Open Access
Castiglione, Filippo; Ghersi, Dario; Celada, Franco
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">computer modeling</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">IMMSIM</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">memory-anti-naive</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">attrition</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">CD8+ response</subfield> </datafield> <controlfield tag="005">20200120171207.0</controlfield> <controlfield tag="001">3351968</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">College of Information Science and Technology, University of Nebraska</subfield> <subfield code="a">Ghersi, Dario</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">NYU School of Medicine, New York</subfield> <subfield code="a">Celada, Franco</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2297218</subfield> <subfield code="z">md5:965b775d97085c5100f62a180146f3a5</subfield> <subfield code="u">https://zenodo.org/record/3351968/files/fimmu-10-01513.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-07-26</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-ipc</subfield> <subfield code="o">oai:zenodo.org:3351968</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="v">10</subfield> <subfield code="p">Frontiers in Immunology</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">National Research Council of Italy</subfield> <subfield code="a">Castiglione, Filippo</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Computer Modeling of Clonal Dominance: Memory-Anti-Naïve and Its Curbing by Attrition</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-ipc</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">826121</subfield> <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Experimental and computational studies have revealed that T-cell cross-reactivity is a&nbsp;widespread phenomenon that can either be advantageous or detrimental to the host.&nbsp;In particular, detrimental effects can occur whenever the clonal dominance of memory&nbsp;cells is not justified by their infection-clearing capacity. Using an agent-based model&nbsp;of the immune system, we recently predicted the &ldquo;memory anti-na&iuml;ve&rdquo; phenomenon,&nbsp;which occurs when the secondary challenge is similar but not identical to the primary&nbsp;stimulation. In this case, the pre-existingmemory cells formed during the primary infection&nbsp;may be rapidly deployed in spite of their low affinity and can actually prevent a potentially&nbsp;higher affinity na&iuml;ve response from emerging, resulting in impaired viral clearance. This&nbsp;finding allowed us to propose a mechanistic explanation for the concept of &ldquo;antigenic&nbsp;sin&rdquo; originally described in the context of the humoral response. However, the fact&nbsp;that antigenic sin is a relatively rare occurrence suggests the existence of evolutionary&nbsp;mechanisms that can mitigate the effect of the memory anti-na&iuml;ve phenomenon. In&nbsp;this study we use computer modeling to further elucidate clonal dominance and the&nbsp;memory anti-na&iuml;ve phenomenon, and to investigate a possible mitigating factor called&nbsp;attrition. Attrition has been described in the experimental and computational literature&nbsp;as a combination of competition for space and apoptosis of lymphocytes via type-I&nbsp;interferon in the early stages of a viral infection. This study systematically explores&nbsp;the relationship between clonal dominance and the mechanism of attrition. Our results&nbsp;suggest that attrition can indeed mitigate the memory anti-na&iuml;ve effect by enabling the&nbsp;emergence of a diverse, higher affinity na&iuml;ve response against the secondary challenge.<br> In conclusion, modeling attrition allows us to shed light on the nature of clonal interaction&nbsp;and dominance.&nbsp;</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.3389/fimmu.2019.01513</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 145 |
Downloads | 85 |
Data volume | 195.3 MB |
Unique views | 137 |
Unique downloads | 80 |