Journal article Open Access
Castiglione, Filippo; Ghersi, Dario; Celada, Franco
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3351968</identifier> <creators> <creator> <creatorName>Castiglione, Filippo</creatorName> <givenName>Filippo</givenName> <familyName>Castiglione</familyName> <affiliation>National Research Council of Italy</affiliation> </creator> <creator> <creatorName>Ghersi, Dario</creatorName> <givenName>Dario</givenName> <familyName>Ghersi</familyName> <affiliation>College of Information Science and Technology, University of Nebraska</affiliation> </creator> <creator> <creatorName>Celada, Franco</creatorName> <givenName>Franco</givenName> <familyName>Celada</familyName> <affiliation>NYU School of Medicine, New York</affiliation> </creator> </creators> <titles> <title>Computer Modeling of Clonal Dominance: Memory-Anti-Naïve and Its Curbing by Attrition</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <subjects> <subject>computer modeling</subject> <subject>IMMSIM</subject> <subject>memory-anti-naive</subject> <subject>attrition</subject> <subject>CD8+ response</subject> </subjects> <dates> <date dateType="Issued">2019-07-26</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3351968</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3389/fimmu.2019.01513</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ipc</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Experimental and computational studies have revealed that T-cell cross-reactivity is a&nbsp;widespread phenomenon that can either be advantageous or detrimental to the host.&nbsp;In particular, detrimental effects can occur whenever the clonal dominance of memory&nbsp;cells is not justified by their infection-clearing capacity. Using an agent-based model&nbsp;of the immune system, we recently predicted the &ldquo;memory anti-na&iuml;ve&rdquo; phenomenon,&nbsp;which occurs when the secondary challenge is similar but not identical to the primary&nbsp;stimulation. In this case, the pre-existingmemory cells formed during the primary infection&nbsp;may be rapidly deployed in spite of their low affinity and can actually prevent a potentially&nbsp;higher affinity na&iuml;ve response from emerging, resulting in impaired viral clearance. This&nbsp;finding allowed us to propose a mechanistic explanation for the concept of &ldquo;antigenic&nbsp;sin&rdquo; originally described in the context of the humoral response. However, the fact&nbsp;that antigenic sin is a relatively rare occurrence suggests the existence of evolutionary&nbsp;mechanisms that can mitigate the effect of the memory anti-na&iuml;ve phenomenon. In&nbsp;this study we use computer modeling to further elucidate clonal dominance and the&nbsp;memory anti-na&iuml;ve phenomenon, and to investigate a possible mitigating factor called&nbsp;attrition. Attrition has been described in the experimental and computational literature&nbsp;as a combination of competition for space and apoptosis of lymphocytes via type-I&nbsp;interferon in the early stages of a viral infection. This study systematically explores&nbsp;the relationship between clonal dominance and the mechanism of attrition. Our results&nbsp;suggest that attrition can indeed mitigate the memory anti-na&iuml;ve effect by enabling the&nbsp;emergence of a diverse, higher affinity na&iuml;ve response against the secondary challenge.<br> In conclusion, modeling attrition allows us to shed light on the nature of clonal interaction&nbsp;and dominance.&nbsp;</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/826121/">826121</awardNumber> <awardTitle>individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 145 |
Downloads | 85 |
Data volume | 195.3 MB |
Unique views | 137 |
Unique downloads | 80 |