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Abstract— Feedforward control is essential in high-
performance motion control. The aim of this paper is to
develop a unified framework for automatic feedforward
optimization from both batch-wise data sets as well as
real-time data. A statistical analysis is employed to analyze
the effect of noise, i.e., an iteration varying disturbance,
on feedforward controller performance. This provides new
insights, both potential advantages as well as possible hazards
of real-time estimation are considered. Finally, a case study
confirms and illustrates the results.

I. INTRODUCTION

Feedforward control, ranging from manual tuning to learn-
ing control, is essential for enhancing positioning perfor-
mance of motion systems. Manual feedforward tuning en-
ables performance improvement by anticipating for known
exogenous disturbances, where typically the to be applied
reference is used [1]. For systems with repeating motion
tasks, learning feedforward algorithms such as iterative
learning control (ILC) are able to automatically learn from
previous tasks, to compensate for the repeating contributions
in the error [2], [3]. These methods benefit from preview,
allowing non-causal feedforward controllers to compensate
for disturbances before these affect the system, resulting
in a major performance improvement compared to causal
controllers [4].

Despite potential performance improvement of learning
control, standard approaches may actually lead to a perfor-
mance degradation in typical motion systems, where varying
tasks are commonly performed. Standard learning algorithms
generate a feedforward signal that exactly compensates for
trial-invariant disturbances during a specific task [5], [6].
However, many motion systems perform non-repeating mo-
tion tasks, e.g., semiconductor wire-bonding [7], lithography
[8] and printing [9]. Hence, flexibility towards trial-varying
references is essential, whereas current learning feedforward
algorithms are generally highly sensitive to trial-varying
exogenous signals [10].

ILC algorithms that are flexible against varying tasks
have been developed [9], [6], [10]. These methods combine
model-based feedforward and ILC, resulting in flexible learn-
ing feedforward. The central idea in this method is to pos-
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tulate a controller parameterization and learn the parameters
using common principles from ILC [2]. From the perspective
of system identification, flexible feedforward tuning tech-
niques have been developed which essentially replaces the
learning filter design in ILC by an estimation step. In [11],
extended parameterizations are explored, encompassing joint
input shaping and feedforward control. For both learning and
identification methods batch-wise approaches are exploited,
i.e., controller parameters are updated after each experiment,
where a key aspect is to obtain unbiased estimates. In [8],
these learning and identification approaches are compared,
directly connection iterative feedforward tuning to inverse
system identification.

Although important progress has been made in learning
and identification for feedforward control for a class of tasks,
these approaches typically consider a batch-wise operation.
Consequently, performance improvement takes place after
each task is completed. The aim of this paper is to develop
a framework for current-iteration feedforward tuning, i.e.,
updating the feedforward controller during a motion task
for direct performance improvement, for general controller
structures as in [12]. The main contribution in the present
paper is to propose a unified framework for learning feed-
forward control, covering both batch-wise approaches as the
development of current-iteration learning. The following sub-
contributions are addressed in this work;

1) a detailed statistical analysis of the proposed frame-
work is provided to show that biased estimates are
obtained in earlier approaches, and,

2) a simulation study with a benchmark system is per-
formed to confirm the theoretical conclusions, includ-
ing the immediate benefit of direct learning.

Indeed, theoretical conclusions in this paper may provide
relevant new perspectives on earlier related approaches,
including [13], which are further exploited.

This paper is organized as follows. In Section II, the
general framework for feedforward control is covered and
a parameter optimization problem is proposed. In Section
III, a theoretical analysis of the proposed parameter opti-
mization in the presence of noise is provided. In Section
IV, a simulation study is conducted in which the proposed
framework is applied to a benchmark system. Both the cases
with and without noise are compared. Finally, conclusions
and ongoing research are provided in Section V.

II. TOWARDS PARAMETER OPTIMIZATION FOR
FEEDFORWARD CONTROL

In this section, a general framework is developed for
both batch-to-batch learning as well as for current-iteration



feedforward optimization. First, a feedforward controller pa-
rameterization is considered that allows an analytic solution,
i.e., through linear least squares optimization. Second, the
connection is established between feedforward controller
tuning and parameter estimation from a system identification
point of view. For the latter, solutions are provided both for
a batch-wise setting as in a current-iteration setting.

A. Problem definition in a unified framework
To define the feedforward control problem, consider the

general control configuration in Fig. 1 consisting of an input
shaper Cr, feedforward controller Cff , feedback controller
Cfb and true plant P0. The true plant, mapping inputs u to
outputs y0, is given by

P0(q−1, θ0) =
B(q−1, θ0b )

A(q−1, θ0a)
(1)

which is LTI, with A(q−1) and B(q−1) polynomials in the
backward shift operator q−1 and, θ0a and θ0b are the true
plant coefficients. Furthermore, it is assumed that A(q−1)
and B(q−1) are given by

A(q−1, θa) =

na∑
i=1

ψi(q
−1)θa,i

B(q−1, θb) =

nb+na∑
i=na+1

ψi(q
−1)θb,i

(2)

in which ψ(q) ∈ R[q−1] are referred to as basis functions.
The scheme in Fig. 1 includes both feedback and feed-

forward control. The goal of the feedforward controller is
to anticipate for known or repeating exogenous disturbances
that act on the system, whereas the feedback controller
attenuates unknown disturbances and model errors. In the
remainder of this work, the focus is on feedforward control,
i.e., optimization of Cff (θ), since this is the main contribu-
tion to the tracking performance. The goal of the feedforward
controller is defined as follows.

Definition 1 (Feedforward control goal) Determine a
feedforward controller such that the output y0 tracks the
reference r, i.e., eliminate reference induced tracking errors
e = r − y0, defined as

e = S(Cr − PCff )r (3)

with S = (I + PCfb)
−1.

A well known result from classical feedforward control is
that the plant inverse must be reflected in the feedforward
controller [1], which is also the case for the proposed com-
bined input shaper and feedforward controller. By satisfying

Cff (q, θa)C−1r (q, θb) = P−1(q, θ0) =⇒ e(t) = 0∀t (4)

it follows that the reference induced positioning error is
eliminated. This can also be obtained by setting Cr = I
and directly parameterizing Cff as P−1. However, for direct
inversion non-minimum phase zeros and properness of the
plant might lead to internal stability issues and non-causal
feedforward control, see e.g., [4]. Direct inversion issues can
be avoided by using an input shaper, however this is only

P0Cfb
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Fig. 1. General control scheme with feedback controller Cfb, feedforward
controller Cff , input shaper Cr and plant P0.

applicable to point-to-point motion since Cr modifies the
reference, see [12] for a detailed motivation.

Next, consider the following feedforward controller pa-
rameterization, directly establishes the connection between
plant parameters and controller tuning knobs θ.

Definition 2 (Feedforward controller parameterization)
The input shaper and feedforward controller are
parameterized as follows.

C =

{
(Cr, Cff (θ))

∣∣∣ Cff (θ) = A(q−1, θ)
Cr = B(q−1)

, θ ∈ Rna
}

(5)

Where Cff (θ) is parameterized as function of the to be
optimized parameters θ. Next,

Ψ =
[
ψ1 ψ2 . . . ψna

]>
, (6)

and to be estimated parameters

θ =
[
θ1 θ2 . . . θna

]> ∈ Rna (7)

such that Cff (q−1, θ) = Ψ>θ.

Remark 1 In the present paper, the focus is on optimization
of Cff (θ) and Cr is assumed to be fixed as in Fig. 1, to avoid
cumbersome notation. Conceptually, the following approach
and analyses is similar for the general case, i.e., with Cr(θ).
In the remainder of this work the notation θ refers to θa,
similar for θ0 referring to θ0a and, B(q−1, θb) is referred to
as B(q−1) assuming that θb is known.

Using the parameterization (5) the reference induced error
becomes

e = S(q−1)

(
B(q−1)− B(q−1)

A(q−1, θ0)
A(q−1, θ)

)
r, (8)

hence, if θ → θ0, then the positioning error e→ 0, such that
(4) is satisfied.

B. Parameter optimization for feedforward control

In the remainder of this section, an optimization problem is
formulated to optimize Cff (θ). The optimization is based on
linear least squares, for which analytic solutions are provided
for both the batch-wise case as for real-time approaches.

Definition 3 (Parameter optimization problem) Given
measurement data sequences {u} and {y0}, determine θ∗

such that the feedforward controller (5) minimizes the
reference induced tracking error.



Consider the following optimization problem for compu-
tation of θ∗.

min
θ
V (Cff (θ)) (9)

In which the objective function is of the form

V (θ, k) =
1

2

k∑
i=1

ε2(i) (10)

with residual function ε(k) linear in the parameter θ and
given by,

ε(k) := ū(k)− φ(k)θ (11)

where φ(k) is a filtered version of the measured output data
using the basis functions,

φ(k) = Ψ>(q)y(k) (12)

and ū(k) is a filtered version of the input data, i.e.

ū(k) = B(q)u(k) (13)

as depicted in Fig. 2.
The objective function (10) is minimized if θ∗ → θ0, as

is shown by substituting φ(k) and ū(k) in (11),

ε(k) = B(q)u(k)−Ψ>θy(k) (14)
= B(q)u(k)−A(q, θ)y(k) (15)

combining this with (1) results in,

ε(k, θ)
∣∣
θ=θ0

= 0. (16)

Hence the gradient of the cost function

∇V (θ, k)
∣∣
θ=θ0

=

k∑
i=1

ε(k, θ)
∂ε(k, θ)

∂θ

∣∣∣∣
θ=θ0

= 0 (17)

also becomes zero. This implies that the minimum of the
cost function is obtained for θ∗ → θ0.

In the following two subsection, analytic solutions to
the optimization problem are derived for both a batch-wise
setting as for an online optimization setting.

B.1) Batch-to-batch parameter optimization
In a batch-wise optimization setting, an experiment or task

is performed from which a batch of data is collected [8]. The
data collected during task nr j, denoted with {uj} and {yj}
is used to optimize Cff (θ) for the next task, i.e., determine
θj+1 and update the controller.

Next, it is shown that for batch-wise optimization, the op-
timization problem (9) is equivalent to a linear least squares
problem. To this extend, the proposed residual function (11)
is rewritten in matrix form using data from task j resulting
in the following notation,

E = Ū − Φθ (18)

in which

E =


ε(1)
ε(2)

...
ε(k)

 ,Φ =


φ(1)
φ(2)

...
φ(k)

 , Ū =


ū(1)
ū(2)

...
ū(k)
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Fig. 2. Combined framework for feedforward control and parameter
optimization.

such that the objective function is alternatively written as
V (θ) = 1

2E
>E , then the optimization problem (9) is equiv-

alent to the least squares problem

Ū = Φθ (19)

with analytic solution

θ∗ = (Φ>Φ)−1Φ>Ū . (20)

Assumption 1 Assume that u(k) in open-loop or r(k) in
closed-loop is persistently exciting such that the matrix Φ>Φ
is non-singular.

To solve this problem in a batch-wise fashion, consider the
following procedure.

Procedure 1 (Batch-to-batch parameter optimization)
1) Collect input-output data {uj} and {yj} from the

current task
2) Determine Ū j and Φj

3) Compute θj+1 =
(
(Φj)>Φj

)−1
(Φj)>Ū j

4) Update the controller parameters, i.e., determine
Cj+1
ff (θj+1), and continue with step 1 for task j + 1

B.2) Current-iteration parameter optimization
In the previous section, a batch-wise solution for the

optimization problem (9) is outlined. A disadvantage of
this method is that the controller can only be updated in-
between tasks, i.e., performance improvement after each task.
In this section, an online optimization is proposed based on
recursive least squares (RLS), which allows to optimize the
parameters efficiently during each iteration. Hence, enabling
performance improvement during a task.

The recursive equivalent of the solution to (9) is given by

θ(k) = θ(k − 1) +K(k)
(
ū(k)− φ>θ(k − 1)

)
(21)

in which the time dependent learning gain K is given by

K(k) = P (k)φ(k) (22)

and P (k) is recursively computed as follows

P (k) = P (k − 1)
[
I − φ(k)Σφ(k)>P (k − 1)

]
(23)

where

Σ =
(
I + φ(k)>P (k − 1)φ(k)

)−1
. (24)

with initial conditions P (t0) =
(
Φ(t0)>Φ(t0)

)−1
and θ(t0).

A detailed derivation of the RLS algorithm can be found



in [14, Chapter 2], [15]. Next, the following procedure is
proposed for online optimization of the parameter using the
RLS algorithm in (21) - (24)

Procedure 2 (Online parameter optimization)
1) Define an initial parameter estimate θ(t0) and initial

condition P (t0)
2) At time k compute the learning gain K(k) using (22)

- (24)
3) Compute the parameters θ(k) using (21)
4) Update the controller Cff (θ(k)) using θ(k) and start

at step 2 for the next iteration

To conclude this section, an optimization problem is pro-
posed for feedforward controller tuning and solutions for
both batch-to-batch and online settings have been provided.
The main advantage of online optimization is that perfor-
mance can directly be improved instead of improvement after
each iteration as in a batch-wise setting. However, both meth-
ods rely on obtaining an unbiased estimate of the optimal
tuning parameters in order to minimize the positioning error
[16], as given in Definition 2. Therefore, in the next section
a statistical analysis of the proposed optimization problem is
provided in the presence of measurement noise.

III. BIAS ANALYSIS IN PRESENCE OF NOISE

In this section, the estimator proposed in section II is
further analyzed for a real life situation, i.e., where mea-
surement noise is present in the signals that are used for
parameter optimization. To further specify how noise effects
these signals consider the following assumption.

Assumption 2 The input signal u is assumed to be noise
free. The output y0 is polluted with measurement noise v
such that the measured output becomes

ym(t) = y0(t) + v(t), (25)

Note that this is highly related to the errors-in-variables
setting [17], where noise is present in both the measured
signals as in the regressor signal.

Assumption 3 Measurement noise v(t) ∼ N (0, σ2
v) is as-

sumed to be zero-mean white noise with independent and
identically distributed samples (i.i.d.) and variance σ2

v .

Next, the optimization problem (9), that has been shown to
be equivalent to the least squares problem (19), is further
analyzed in the presence of noise. Therefore, the optimal
estimate θ∗ that minimizes the cost function, i.e.,

∂V (θ)

∂θ

∣∣∣∣∣
θ=θ∗

= 0 (26)

is further analyzed to provide insight in which cases a biased
estimate is obtained. To compute the gradient of the objective
function, consider the residual signal ε where y0 is now
replaced by ym leading to (18) where the matrix Φ(k) is
now composed from

φ(k) = Ψ>(q)ym(k). (27)

Computing the gradient of V (θ) and equating this to zero

∂V (θ)

∂θ
= −Φ>

(
Ū − Φθ

)
= 0 (28)

gives the optimal parameter estimate (20).
Before stating the main result in this work consider the

following parameterization of the basis functions ψ(q). The
nth basis function is of the form

ψn(q) =

nψ∑
j=0

ajnq
−j (29)

where nψ is the highest order of all na basis functions and
ajn ∈ R is the jth coefficient corresponding to the nth basis
function.

Theorem 1 (Bias of the estimator) The expected value of
the optimal estimate θ∗ as function of y0 and v is given by

E θ∗ = [(Ryy(k) + 2Ryv(k) + Rvv(k)) Γa]
−1

· (Ryy(k) + Ryv(k)) Γaθ0
(30)

where Γa is a matrix consisting of all coefficients corre-
sponding to the na basis functions.

Γa =

 a
0
1 . . . a0na
...

...
a
nψ
1 . . . a

nψ
na

 ∈ Rnψ×na (31)

Furthermore, the matrices Ryy(k) ∈ Rnψ×nψ and Rvy(k) ∈
Rnψ×nψ are estimates of the auto-correlation matrix and
cross-correlation matrix on the basis of k data samples
respectively. Also note that the autocorrelation matrix of the
noise Rvv(k) = σ2

vInψ for k →∞.

The proof is omitted due to space restrictions.
In [17] it is shown that under mild conditions

Ryy = lim
k→∞

1

k
Ryy(k) Rvy = lim

k→∞

1

k
Rvy(k), (32)

this, together with Theorem 1 allows to further analyze the
setting where input-output data is collected in a closed-
loop fashion, and online estimation is used to determine the
feedforward parameter as in Fig. 2, which is also exploited
in [13]. First, note that

y0 = SPCfb(r − v) (33)

implying that correlation is present between y0 and v due
to feedback. Next using Theorem 1 it becomes evident that
the obtained estimates will be biased due to measurement
noise, since both Rvy 6= 0 and Rvv 6= 0 resulting in
E θ∗ 6= θ0. This leads to severe performance degradation
of not accounted for as will be shown in section IV.

In the following Corollaries, the ideal setting without noise
and the case where input-output data is collected in open-
loop with noise are considered.

Corollary 1 (Noise free optimization)
Consider the situation where measurement noise is
not present, hence the noise related terms in (30) vanish
resulting in

E θ∗ = [RyyΓa]
−1

RyyΓaθ0 = θ0. (34)
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Fig. 3. Frequency response function of a typical motion system.

From which it follows that the estimate θ∗ is an unbiased
estimate of θ0 if noise is not present.

Corollary 2 (Noisy optimization in open-loop)
Consider the situation where noise is present and the
input output data is collected in open-loop, i.e., without a
feedback controller being present. This implies that v and
y0 are uncorrelated using (33), i.e., Rvy = 0, therefore the
estimate (30) simplifies to

E θ∗ =
[(
Ryy + σ2

vInψ
)

Γa
]−1

RyyΓaθ0. (35)

This shows that the estimate becomes biased E θ∗ 6= θ0 in
open-loop due to the effect of measurement noise.

From this analysis it follows that noise does influence the
estimate in both the open-loop case as in a closed-loop case.
In the following section an example is provided to illustrate
the necessity of appropriately dealing with measurement
noise in estimation problems to be able to successfully
implement feedforward control.

IV. ILLUSTRATIVE CASE STUDY

Typical motion systems including; wafer stages, printers
and pick-and-place robot, are described by rigid-body behav-
ior in addition to flexible modes [18].

P (s) = M−1
1

s2
+

∞∑
i=1

(cmqi + scmvi)bmi
s2 + 2ζiωis+ ω2

i

(36)

An example of a typical frequency response function of
such a motion system is depicted in Fig. 3, where a clear
mass behavior is observed untill the first flexible mode. For
controller design, the bandwidth is usually a factor 3 below
the first flexible mode, i.e., where the rigid-body behavior
is dominant. Hence, rigid-body dynamics are leading for
performance, whereas flexible modes are taken into account
for stability reasons.

A. Plant and feedback controller

In the remainder of this section, simulations are performed
to confirm theoretical conclusions, i.e., illustrate the effect of
measurement noise on the tracking performance. For the sake
of illustration a single mass system P (s) = 1/ms2 is used.
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Fig. 4. Online parameter estimates, i.e., θnoise with noise (–) with 99.7 %
confidence interval (–), without noise θnoise-free (–) and the true parameter θ0
(- -). Batch-wise estimate is also provided (–). A zoom for t ∈ [0.04, 0.2]
shows the convergence of θnoise-free.

First, consider the following discretized transfer function of
the plant,

P (z−1) =
T 2
s

2

(z−1 + z−2)

m0(1− 2z−1 + z−2)
(37)

where Ts = 0.001 is the sample time and m0 = 2 the mass.
Second, a feedback controller is designed

Cfb(s) = 1.9 · 108 × s+ 15.71

s2 + 1.3 · 104s+ 3.2 · 106
(38)

realizing a bandwidth of 10 Hz. Where the bandwidth is
defined as the cross-over frequency of the open-loop transfer
function, denoted with L = PCfb. Next, consider the
feedforward parameterization for this example to obtain the
setting in Fig. 2.

B. Feedforward controller
According to Definition 2, the input shaper is given by the

plant nominator polynomial, i.e.,

Cr(q) =
1

2
(q−1 + q−2) (39)

and Cff (q, θ) = ψ(q)θ with basis function,

ψ(q) =
1− 2q−1 + q−2

T 2
s

. (40)

that depends on the plant denominator polynomial. The goal
is to optimize the feedforward controller parameter θ using
the optimization problem (9), in which φ(k) = Ψ>y(k)
where Ψ consists of the single basis function (40) in this
example, i.e., φ(k) = ψ(q)y(k).

C. Results and conclusions
Next, the feedforward controller is optimized online using

Procedure 1, and simulations are conducted with and without
noise to shown the influence. Furthermore, batch-wise opti-
mization is included to show the benefit of direct learning.
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The reference is takes as a sequence of fourth-order point-to-
point tasks, see Fig. 5, and white noise is used with variance
σv = 10−13. The resulting parameter estimates are depicted
in Fig. 4 and the obtained positioning error in Fig. 5.

From these results the following observations can be made.
• In the noise-free case, the feedforward parameter con-

verges to the true mass of the system, i.e., θnoise-free →
θ0. This confirms that an unbiased estimate is obtained
if measurement noise is not present, as shown in Corol-
lary 1. Note that after a small time interval, (4) is
satisfied since the positioning error converges to zero.

• In case that measurement noise is present, although
the variance decreases, the parameter estimate does not
converge to the true system parameter θnoise 6→ θ0,
i.e., the obtained estimate is biased confirming the
theoretical conclusions in Section III. It can be seen that
due to the biased estimate the positioning error remains
non-zero, i.e., (4) is not satisfied.

• The immediate benefit of direct learning is observed.
For the batch-wise implementation a large error is
present during the first task, whereas, for the online
approach the estimate converges within a fraction of
a task, see zoom in Fig. 4. Hence, the online approach
is more robust towards variations in system parameters.

Finally, it can be concluded that the simulations confirm the
theoretical conclusions in this paper.

V. CONCLUSIONS

In this paper, a unified framework is provided for auto-
matic feedforward controller tuning. The framework exploits
both batch-wise tuning as well as online tuning, leading to
new opportunities and insights for feedforward control. A
linear least squares optimization problem with an analytic
solution is developed to optimize the feedforward controller
parameters. Furthermore, a detailed statistical analysis is
provided in the case where measurement noise is present,

indicating that biased estimates are obtained in earlier ap-
proaches [13]. An example confirms the theoretical conclu-
sions, i.e., indicating the possible hazard of using biased
estimates for feedforward control resulting in a deterioration
of the positioning performance. Finally, benefits of online
learning for parameter varying systems are indicated.
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[17] T. Söderström and P. Stoica, System Identification. Prentive Hall,
Hemel Hempstead UK, 1989.

[18] W. K. Gawronski, Advanced Structural Dynamics & Active Control of
Strucutres, F. F. Ling, Ed. Springer, 2004, vol. 411 p.
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