Dataset Open Access

ToyADMOS dataset

Yuma Koizumi; Shoichiro Saito; Noboru Harada; Hisashi Uematsu; Keisuke Imoto


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>ToyADMOS dataset is a machine operating sounds dataset of approximately 540 hours of normal machine operating sounds and over 12,000 samples of anomalous sounds collected with four microphones at a 48kHz sampling rate, prepared by Yuma Koizumi and members in NTT Media Intelligence Laboratories. The dataset consists of three sub-dataset: &quot;toy car&quot; for&nbsp;product inspection task, &quot;toy conveyor&quot; for fault diagnosis for fixed machine task, and &quot;toy train&quot; for fault diagnosis for moving machine task.</p>\n\n<p>Since the total size of the ToyADMOS dataset is over 440GB, each sub-dataset is split into 7-9 files by 7-zip (7z-format). The total size of the compressed dataset is approximately 180GB, and that of each sub-dataset is approximately 60GB. Download the zip files corresponding to sub-datasets of interest and use your favorite compression tool to unzip these split zip files.</p>\n\n<p>The detail of the dataset is described in [1] and GitHub: https://github.com/YumaKoizumi/ToyADMOS-dataset&nbsp;</p>\n\n<p>License: see the file named LICENSE.pdf</p>\n\n<p>[1]&nbsp;Yuma Koizumi, Shoichiro Saito, Noboru Harada, Hisashi Uematsu and Keisuke Imoto, &quot;ToyADMOS: A Dataset of Miniature-Machine Operating Sounds for Anomalous Sound Detection,&quot; in Proc of Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2019.&nbsp;</p>", 
  "license": "", 
  "creator": [
    {
      "affiliation": "NTT Corporation", 
      "@id": "https://orcid.org/0000-0003-3645-6213", 
      "@type": "Person", 
      "name": "Yuma Koizumi"
    }, 
    {
      "affiliation": "NTT Corporation", 
      "@type": "Person", 
      "name": "Shoichiro Saito"
    }, 
    {
      "affiliation": "NTT Corporation", 
      "@type": "Person", 
      "name": "Noboru Harada"
    }, 
    {
      "affiliation": "NTT Corporation", 
      "@type": "Person", 
      "name": "Hisashi Uematsu"
    }, 
    {
      "@id": "https://orcid.org/0000-0002-0703-8293", 
      "@type": "Person", 
      "name": "Keisuke Imoto"
    }
  ], 
  "url": "https://zenodo.org/record/3351307", 
  "datePublished": "2019-07-30", 
  "version": "Version 1", 
  "keywords": [
    "Anomaly detection", 
    "Acoustic condition monitoring", 
    "Sound"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/LICENSE.pdf", 
      "encodingFormat": "pdf", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.001", 
      "encodingFormat": "001", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.002", 
      "encodingFormat": "002", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.003", 
      "encodingFormat": "003", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.004", 
      "encodingFormat": "004", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.005", 
      "encodingFormat": "005", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.006", 
      "encodingFormat": "006", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.007", 
      "encodingFormat": "007", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyCar.7z.008", 
      "encodingFormat": "008", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.001", 
      "encodingFormat": "001", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.002", 
      "encodingFormat": "002", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.003", 
      "encodingFormat": "003", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.004", 
      "encodingFormat": "004", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.005", 
      "encodingFormat": "005", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.006", 
      "encodingFormat": "006", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyConveyor.7z.007", 
      "encodingFormat": "007", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.001", 
      "encodingFormat": "001", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.002", 
      "encodingFormat": "002", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.003", 
      "encodingFormat": "003", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.004", 
      "encodingFormat": "004", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.005", 
      "encodingFormat": "005", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.006", 
      "encodingFormat": "006", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.007", 
      "encodingFormat": "007", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.008", 
      "encodingFormat": "008", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/bfe663d1-f154-4f55-b177-7dd0e6762a65/ToyTrain.7z.009", 
      "encodingFormat": "009", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.3351307", 
  "@id": "https://doi.org/10.5281/zenodo.3351307", 
  "@type": "Dataset", 
  "name": "ToyADMOS dataset"
}
3,371
104,938
views
downloads
All versions This version
Views 3,3713,377
Downloads 104,938104,924
Data volume 872.0 TB871.9 TB
Unique views 2,9662,971
Unique downloads 12,62812,623

Share

Cite as