Conference paper Open Access

Efficient Winograd-based Convolution Kernel Implementation on Edge Devices

Xygkis, Athanasios; Papadopoulos, Lazaros; Moloney, David; Soudris, Dimitrios; Yous, Sofiane


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-20</subfield>
  </datafield>
  <controlfield tag="005">20200120171728.0</controlfield>
  <controlfield tag="001">3347180</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3347180</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The implementation of Convolutional Neural Networks on edge Internet of Things (IoT) devices is a significant programming challenge, due to the limited computational resources and the real-time requirements of modern applications. This work focuses on the efficient implementation of the Winograd convolution, based on a set of application-independent and Winograd-specific software techniques for improving the utilization of the edge devices computational resources. The proposed techniques were evaluated in Intel/Movidius Myriad2 platform, using 4 CNNs of various computational requirements. The results show significant performance improvements, up to 54%, over other convolution algorithms.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, NTUA, Greece</subfield>
    <subfield code="a">Papadopoulos, Lazaros</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Intel Corporation, Ireland</subfield>
    <subfield code="a">Moloney, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of ECE, NTUA, Greece</subfield>
    <subfield code="a">Soudris, Dimitrios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Intel Corporation, Ireland</subfield>
    <subfield code="a">Yous, Sofiane</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">350657</subfield>
    <subfield code="z">md5:b23e0fe233b68b39515e3278fdff0b96</subfield>
    <subfield code="u">https://zenodo.org/record/3347180/files/Efficient_Winograd-based2.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Intel Corporation, Ireland</subfield>
    <subfield code="a">Xygkis, Athanasios</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/3195970.3196041</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Efficient Winograd-based Convolution Kernel Implementation on Edge Devices</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">780572</subfield>
    <subfield code="a">Software Development toolKit for Energy optimization and technical Debt elimination</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
35
1,043
views
downloads
Views 35
Downloads 1,043
Data volume 365.7 MB
Unique views 33
Unique downloads 1,012

Share

Cite as